
Critical Strategies for Improving the Code
Quality and Cross-Disciplinary Impact of

the Computational Earth Sciences

Johnny Wei-Bing Lin
(Physics Department, North Park University)

Tyler A. Erickson
(MTRI and Michigan Technological University)

Acknowledgments: Thanks to Ricky Rood and Jeremy Bassis at the
University of Michigan for discussions.

Slides version date: December 6, 2011. Presented at the American Geophysical Union
2011 Fall Meeting in San Francisco, CA on December 8, 2011. This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States
License.

Outline
 The current insular state of computational earth

sciences and why we should care.
 Critical strategy #1: Unit testing and code review.
 Critical strategy #2: Social coding.
 Critical strategy #3: Open application programming

interfaces (APIs).
 Example of cross-disciplinary fertilization possible with

open APIs.
 Agency and community roles to encourage adoption

of best practices to break insularity.

Bottom line: Adopting these critical strategies will
improve the code quality and impact of atmospheric
sciences HPC.

Insularity of the computational earth
sciences and why this is bad
 Symptom of insularity: We

use languages no one else
uses. Thus:
 Outside users cannot use

or test our code.
 Code innovations created

by others are unavailable
to us: Fewer synergies
are possible.

 Computational power and
tools have exploded outside
the HPC community: We
can't access the results of
that explosion.

Language Rank Rating

Java 1 17.913%

C 2 17.707%

C++ 3 9.072%

Language Rank Rating

Fortran 31 0.381%

Matlab 21 0.573%

IDL 51-100 N/A

(top) The 3 most popular languages. (bott) Popularity of
languages used in the computational earth sciences. Data from
the TIOBE Programming Community Index for October 2011.

Critical strategy #1: Unit testing and
code review results in better code
 Detect faults in code:

 Code reading, functional testing, or structural testing found,
on average, 50% of faults in test code in one study (Basili &
Selby 1987).

 If this is this study's fault detection rate with some testing,
think what the undetected fault rate would be without testing.

 Higher code quality:
 Structured code reading alone, in one study, yielded 38%

fewer errors per thousand lines of code (Fagan 1978).
 Minimum code quality can increase linearly with the number

of tests written (Erdogmus et al. 2005).
 Well-tested code enables code to be used as “black boxes”

and thus be more reusable.

Critical strategy #2: Social coding can
dramatically improve code quality
 Open source “social coding” is a community development

method that supports code improvement by lowering the barriers
to access and changing.

 Project hosting websites (e.g., GitHub) have robust tools to
enable distributed (not centrally guided):
 Forking and merging.
 Code review.
 Identification of code improvements.
Program development becomes a very broad-based communal
effort!

 Forking a codebase becomes a good, not an evil!:
“The advantages of multiple codebases are similar to the
advantages of mutation: they can dramatically accelerate the
evolutionary process by parallelizing the development path.”
(Stephen O'Grady, 2010)

Critical strategy #3: Open APIs create
synergies that increase the impact of code
 Doing good science requires more than just a single tool

(i.e., a model) but also includes analysis, visualization, etc.
 Applying atmospheric sciences also requires more than

just a single tool, including tools not traditionally associated
with science (e.g., web services).

 When tools communicate well with each other, you can do
a lot more.

 Communication between programs happens through APIs.
 Well-defined APIs make your package usable to many

more users and enable unanticipated synergies.

Example of cross-disciplinary fertilization
using open APIs: pyKML
 pyKML is an open source Python library for easily

manipulating 3-D spatial + temporal KML documents which
provide data to virtual globe applications (e.g., Google
Earth).

 Synergies enabled by this open-API:
 As a Python package, pyKML integrates

KML manipulation with data access,
geographic/geometric processing,
analysis and calculation, web services,
etc.

 pyKML has been used to visualize
atmospheric transport modeling and
weather and climate modeling datasets.

 Even Google geo engineers now use
pyKML and have recommended it at
their own developers conference
(Google I/O).

Example of visualizing climate model output data

Funding agency and community roles
 Goal: Better science through eschewing insularity

and encouraging the adoption of software engineering
and open-source best practices:
 Unit testing and code review.
 Social coding.
 Open APIs.

 Achieving the goal:
 Cultural incentives: Value quality coding and code

advances in addition to scientific discovery.
 Financial incentives: Provide resources and

requirements to discourage insularity and encourage
best practices.

Funding agency roles
 Provide incentives for the publication of model and

analysis source code under open licenses.
 Provide incentives for proposals to include a plan for

ensuring code quality and openness. This could mean:
 A structured plan for code review.
 Source code be asked to pass some minimal suite of tests.
 Code be hosted on a publicly accessible repository even

during the project → “real-time code peer-review.”
 Support the development of open APIs:

 This can be an add-on requirement for standard science
proposals.

 Allocate some funding for pure open API development
proposals.

 ESMF is only a step towards this, since scientific computing
involves much more than coupling model components.

Community roles
 Expectations: Ask your graduate students or

researchers to implement a plan for code review, etc.
as part of their regular work.

 Dissemination: Hold seminars, discussions, and
courses on software engineering best practices and
open APIs.

 Support: Build systems (technological and social) to
grow community support for improved coding
practices:
 Training (e.g., AMS 2012 Python short course).
 Community resources (e.g., pyaos.johnny-lin.com).
 Social coding (e.g., github.com).
 Certification.

Conclusions
 The time is long past where the atmospheric

sciences HPC community can practice
programming the way it always has.

 Unit testing, structured code review, and
social coding can produce higher quality
programs.

 Well-written and open APIs can lead to
amazing synergies with other disciplines.

 Change requires funding agencies and the
atmospheric sciences HPC community to
support a “new” approach to scientific
programming.

