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Introduction

» Dynamic Evolution of the Atmosphere




a

Atmospheric Modeling — Question One

* How do we best represent continuous data when only a
(very) limited amount of information can be stored?

 How do we best represent continuous data discretely?

Last Time: Spatial Discretizations

o

g
ot

/1 D Advection Equatio

Eulerian Frame

~
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We considered

(&7
J

this term.




a
This Time: Temporal Discretizations

Atmospheric Modeling — Question Two

 How do we best represent the dynamic evolution of the
atmosphere? (how to deal with time?)

/1 D Advection Equation\

Eulerian Frame

Let's look at
this term.

Y
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Spatial and Temporal Discretizations

Atmospheric Modeling — Question One

* How do we best represent continuous data when only a
(very) limited amount of information can be stored?

[ These questions are inherently linked ]

Atmospheric Modeling — Question Two

 How do we best represent the dynamic evolution of the
atmosphere? (how to deal with time?)

Y
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equations:

ﬁqj

-
Time evolution
of data point j.

N
Some function

applied to all
other data points.

\.

Spatial and Temporal Discretizations

« Last time we discretized the spatial component of the

.

«  Example from aQJ u
finite-differences: Ot - QA;C

\

.

of all discrete
data values..

— F, r D
\L q is the vector

J

Y
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Spatial and Temporal Discretizations

All the methods discussed yesterday are linear:
For a linear differential equation (e.g. advection equation)
the function fcan be represented as a matrix multiply.

= Aq . A
N q is the vector

of all discrete

Time evolution data values..
y \_ y

of data point j. A
.

e

“Spatlal
discretization”
matrix.
.
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Y

Spatial and Temporal Discretizations

4 . c )
Example from finite-differences: 1D Evolution Equation

o U
_2A$q‘7_1 2qu‘7+1
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Spatial and Temporal Discretizations

4 . .
Example from finite-differences: 1D Evolution Equation

o U
_2A$q‘7_1 2qu‘7+1

\

Matrix is mostly
zeroes!

Banded
structure!

\

Y
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Application to Spatial Discretizations

An evolution matrix which consist mostly of zeroes
are referred to as sparse matrices.

Finite-difference, finite-volume, spectral element
methods all (typically) lead to a sparse evolution
matrix.

The spectral transform method leads to a dense
evolution matrix. That is, there are very few zeros.
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Application to Spatial Discretizations

As the accuracy of a numerical method increases,
there are fewer zeros in the evolution matrix (they
make use of more information).

That is, accuracy implies the need for a dense matrix.

But! A more dense matrix is more computationally
expense to apply in calculations.

Hence, there is a trade-off between accuracy and
efficiency.
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.
The Time Step

Linear Discretization A (Non-Linear Discretization\

R — —F
5 Aq e (q)

- AN

Integrate these discretizations with respect to time:

) ) N \/ ) ) N
Linear Discretization Non-Linear Discretization
" +1 £t +1

Aqdt q"tt - q" = F(q)dt
i AL Y
[ Current value of q } [ Value of q in the

(known) future (unknown)

\
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.
The Time Step

qn—|—1 . qn _

NG &

Linear Discretization

tn—i—l
Aqdt
.

[

PN

-

future (unknown)

future, need to know the
value of this integral!

Value of q in the Current value To connect present and
of q (known)

\ /

\_

\

J

¥ v
qn—|—1 _qn _

Non-Linear Discretization

/
yt1 / N\
F(q)dt

tn
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.
The Time Step

Consider the non-linear discretization
of the evolution equation.

Non-Linear Discretization

Time int1
n+1 n—l—l(—[ ] /
t q; Unknown

\_

(/[ Integrate here ]
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a

Non-linear discretization.

Time

$

A First Explicit Scheme

[At:t”“—t”]

Non-Linear Discretization

n+1

qj gnt+1

F(q)dt =~ At F(q™)

tn

Forward Euler Method
j> q"" =q" + At F(q")
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a

Non-linear discretization.

A First Explicit Scheme

Non-Linear Discretization
t n—+1

[At:t”“—t”]

Time
1

Forward Euler Method
j> q"" =q" + At F(q")

-

\_ YA AY

[

(Unknown | |

Under the explicit discretization, the unknown
is written explicitly in terms of known values.
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a

Non-linear discretization.

Time

[At_t”“—t”]

n+1

A First Implicit Scheme

q
-

Non-Linear Discretization
t n—+1

g - [ pia

tn

J

q_] tn—|—1
/ q)dt ~ At F(q")

(

=)

\_

Backward Euler Method
qn—l—l

~

=q" + At F(q"™)
J
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a
A First Implicit Scheme

Non-linear discretization. Non-Linear Discretization
tn—|—1

[At:t”“—t”]

Time i
n+1 n+l 4
t 9 Backward Euler Method

j\> qn—l—l _ qn 4 At F(qn—l-l)

\_ YA R R Y,

[ \ \

[ Unknown ][ Known ][ Unknown ]

Under the implicit discretization, one needs to
solve a system of equations to find q"*".
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a
A First Implicit Scheme

In the linear case, the backward
Euler method simplifies to

qn—l—l _ qn —|—At A qn—i—l

Linear Discretization
t n—+1

Aqdt

tn

J

We can directly rewrite this in terms of q**/:

q" =1 - At A)'q"

Need to solve a
linear system!

potentially an expensive

Solving the linear system is
X operation.
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p
A First Implicit Scheme

Backward Euler Method Non-Linear Discretization
n+l __ .n n-+1 A
q =q" + At F(q
™) a7 "= F(q)dt
_ ”
In the non-linear case, we can also
linearize the update:
F(q""') =~ F(q )+ ——(a 1 —q")
q
4 . . . )
Linearly Implicit Backward Euler Method
at = a A (1o A @) Pl
\_ J

\

[ Again need to solve a linear system! ]

ethoQ AUQ 0



T . °
Implicit / Explicit Methods w

Q: Clearly the explicit method is Forward Euler Method

significantly more straightforward n+l _ o 1 At F(q™

to evaluate. Why would we choose 9 Q-+ (q )

an implicit method? > .
Backward Euler Method

A: Stability! We will see this more n+l _ o 1 At F(qg™t!

later, but the basic difference is as g 4 Q- (q )

follows:

* Implicit schemes have no limit on the size of the time step size At .
However, a larger time step size is less accurate. Also: Implicit
schemes generally require global communication.

« Explicit schemes impose a (strict) limit on the time step size At .
Exceeding this limit will cause the method to “blow up”.

\ _4
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Accuracy

F(q(z;,t))

A

¢—’ Time

-
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curve determines how

Area under the F

to update q

-

\_

Time Integral

tn

F(q(z;,t))dt
J
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g \
AC cu racy tnl‘llme Integral
F(q(ajj? t))dt

4  Forward Euler

A

Backward Euler

t?’L

*—

t?’L—|—1

F(q)dt =~ At F(q")

tn

F(q)dt ~ At F(q") §



p
Accuracy

A

Fla(z;,1))

Forward Euler Backward Euler

— - *—

Both the forward Euler method and backward Euler method are first-
order accurate: They are only exact when F is a constant.

First-order accuracy is typically insufficient. We need to do better.

\
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p
Leap Frog

The leap frog scheme is a traditional second-order accurate explicit
method. This means that the integral is exact if F is either constant or
linear in time.

Time i‘ ( Two-Step Discretization

n—+1
qj n+1l qn—l . /
t

n—1

Leap frog requires knowledge of
q from two time levels prior to
the unknown level.
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p
Accuracy of Leap Frog

Second-order accuracy for the leap frog method is
attained by using the midpoint value.

F(q(z;,t))

A

Leap Frog 4 Two-Step Discretization
t n—+1

o
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p
Leap Frog

The leap frog scheme has traditionally been used in combination with the
spectral transform method.

The leap frog scheme possesses a
computational mode since the odd and even
yn+t1 q;.“Ll time levels can separate.

Time

This is usually fixed by using off-centering
(Asselin filtering)

Y
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a
Runge-Kutta Methods

Runge-Kutta methods are a popular method for attaining high-order
accuracy in time without the need to store data from multiple time steps.

[Non-Linear Discretization

Time 5
‘ q
n—+1 n+1 — =F
\_ J

* Runge-Kutta methods are multi-stage, which
means in order to advance by At the
function F must be evaluated multiple

times.
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Predictor / Corrector

The second-order accurate predictor-corrector method is one of the most
basic Runge-Kutta methods.

Time A first-order approximation to q;.“rl is first
L i1 computed (prediction step):

d;
q q" =q" + At F(q")

A second-order correction is then computed:

1 1 At
n—|—1:_n . —_F *
q Sa" 54+ (q")
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Predictor / Corrector

The predictor corrector scheme can also be written as follows:

Q"' =q" + - F(a") + —-F(d)

F(q(z;.t) \ |

4 [ Trapezoid rule for integration

\
( N tn_|_1

Q"' =q" +/ F(q)dt
tn
Non-Linear Discretization
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MPAS

S trong Stability Preserving RK3 (SSPRK3)

One of the more popular Runge-Kutta methods is the SSPRK3 scheme,
which is a third-order accurate, three stage Runge-Kutta method.

Stage one:

a'" = q + AtF(q")

Stage two:

g2 = 3qn 1 Lq o A
4G =gt gt

“"F(qV
i  Fla)

Final update:

n+1 1 2

(2)
q; " = gdj o
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n+1
qJ

F(q(z;,t))

A

=qjf + —

(2)
95

At
6

(1)

tn

®

S trong Stability Preserving RK3 (SSPRK3)

Writing as a one-stage update equation:

F(q") +4F(q?) +F(q")

MPAS

\

[ Simpson’s rule for integration ]

\

-
q

N tn—i—l
ntl=q" -|—/ F(q)dt
tn
Non-Linear Discretization

g
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a
Synchronized Leap Frog

The CAM Spectral Element (CAM-SE) model uses a Runge-Kutta scheme
closely modeled on the leap frog scheme discussed earlier:

0 n
Time Stage one: [q( ) = q; ]
ynt1 n+1 ( ) A_t/

q; =q; + 5 F(q})

n 2 @ q (3)
oA/ d; Stage k+1:

2
"+ At _._ ( ) q(k+1) _ q(k—l) —|— At/F(q(k))
J J

Final update:

[ Overall 2™ order ]
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Lagrangian and

Semi-Lagrangian Methods




Advection of a Tracer

Recall Lagrangian reference frame (follows a fluid parcel).

4 )

Lagrangian Frame

Dq

i —
Dt

N Y

What does this mean?

Tracer mixing ratio is constant
following a fluid parcel. / .
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a
Fully Lagrangian Transport Methods

The Lagrangian frame is, in some sense, the most natural way to think
about the advection equation.
4 )

Lagrangian Frame

But: In practice it is difficult to follow around
fluid parcels in presence of deforming flow.

Source: R.A. Pielke
and M. Uliasz (1997).
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a
Semi-Lagrangian Transport Methods

* Instead: Semi-Lagrangian methods follow a fluid parcel in time, then
remap to a regular mesh.

Forward Semi-Lagrangian

-

De-evolve
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(Flux—Form Semi-Lagrangian Transport

-

<

\_

The flux across the
highlighted edge is
desired.

/

Paul Ullrich (UM/UCD)

4 N

Step 1: Project velocity
field backwards in time
to obtain a “flux area’”

N /

Numerical Methods Il

-

<

N

Step 2: Integrate over
the flux area to obtain
the flux through the
edge.
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Deformational Flow Test

Tracer Concentration - Day 0.00

Q
3
= 0
el
«Q
-

180
Longitude
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Stability

» Eigenmode Analysis




a
Introduction to Stability

Numerical instability in a high-frequency computational mode:

llllll

700 850 1000 1150 1300
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a

Introduction to Stability (Linear Update Equation

Y

Apply both time and space discretization: qnJrl = Bq"
& J

Recall definition of eigenvectors of B: If v is an eigenvector of B, then
it satisfies Bv = Av where ) is the (complex) eigenvalue
associated with v.

\{ Computational modes ]

Theory: If B is well behaved, then it will have N eigenvector /
eigenvalue pairs, where N is the number of free parameters.

N

n __ mn
q —E a, V;

1=1
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a

Introduction to Stability (Linear Update Equation

v, eigenvectors of B, with q"! = Bq"
associated eigenvalues A.. %

N
n mn
q :E a, V;
1=1

Substitute this solution into the update equation:

N
qn—i—l = E CI,,?BVZ'
1=1

Use properties of eigenvectors:

N
n+1 n
q = E )\iai V;
=1

Y
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a

Introduction to Stability

V. eigenvectors of B, with
associated eigenvalues A..

N

E n
CLi V’L

1=1

1
where a] "' = X\;al

\

qn—l—l _ Bqn

.

-

4 A
Each mode is amplified by

its corresponding
eigenvalue.

v

Y

[Linear Update Equation\
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4 A
Introduction to Stability (Linear Update Equation ) i

v, eigenvectors of B, with q"! = Bq"
associated eigenvalues A.. %

N

§ n
CLi V’L

1=1

1
where a] "' = X\;al

Take absolute values: ’a?Jrl‘ — ’)\z’ ]a?’\

|

What happens if
Ai| > 17 |\ < 17
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a
Introduction to Stability

V. eigenvectors of B, with
associated eigenvalues A..

qn—l—l _ Bqn

.

[Linear Update Equation\

])\,L-] > 1 Instability! The corresponding computational

mode will blow up.

\)\i\ < 1 Stable! The corresponding computational mode
will either maintain its amplitude, or will decay with

time (lose energy?)

Y
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o Y
5 tab I I / ty :An Exam P l e [Linear Update Equation\ \

Example: Forward Euler plus q"! = Bq"
upwinding (first-order finite volume). \_

V—U—At
Az

Corresponding evolution matrix:

(1—V

vV

\

Eigenvectors and eigenvalues:

(vi); = exp(ijk) A = 1 —v(1 + exp(—ik))
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a
Stability: An Example

Example: Forward Euler plus
upwinding (first-order finite volume).

¢ =qf

Eigenvectors and eigenvalues:

Linear Update Equation

+1 _ Bqn

(vi); = exp(ijk) A =1 —v(1 + exp(—ik))

Absolute value of eigenvalues:

Me|? =1 —2v(v — 1)(cos(k) —

Maximum eigenvalue:

max Me|? =14+ 4v(v—1)

1)

Y
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a
Stability: An Example

Example: Forward Euler plus
upwinding (first-order finite volume).

n+1
4; —

Maximum eigenvalue:

max Me|? =1+4v(v —1)

- Stable as long as

0<r<l
(CFL Condition)

g J

qn—l—l _ Bqn

.

u\t
-

- Ax

Y

[Linear Update Equation\
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