
Numerical Methods II:
 Temporal Discretizations / Stability

Paul Ullrich

August 1st, 2012

Dynamical Core Model
Intercomparison Project (DCMIP)
2012 Summer School

2 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Outline
1.  Introduction / Motivation

2.  Explicit / Implicit Methods

3.  Runge-Kutta Methods

4.  Lagrangian / Semi-Lagrangian Methods

5.  Numerical Stability

Part 1

Introduction
•  Dynamic Evolution of the Atmosphere

4 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Last Time: Spatial Discretizations

•  How do we best represent continuous data when only a
(very) limited amount of information can be stored?

Atmospheric Modeling – Question One

•  How do we best represent continuous data discretely?

Eulerian Frame

∂q

∂t
+ u ·∇q = 0

We considered
this term.

5 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

This Time: Temporal Discretizations

Atmospheric Modeling – Question Two

Eulerian Frame

∂q

∂t
+ u ·∇q = 0

Let’s look at
this term.

•  How do we best represent the dynamic evolution of the
atmosphere? (how to deal with time?)

6 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Spatial and Temporal Discretizations

•  How do we best represent continuous data when only a
(very) limited amount of information can be stored?

Atmospheric Modeling – Question One

Atmospheric Modeling – Question Two

•  How do we best represent the dynamic evolution of the
atmosphere? (how to deal with time?)

These questions are inherently linked

7 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Spatial and Temporal Discretizations

•  Last time we discretized the spatial component of the
equations:

Time evolution
of data point j. Some function

applied to all
other data points.

q is the vector
of all discrete
data values..

∂qj
∂t

=
u

2∆x
qj−1 −

u

2∆x
qj+1

•  Example from
!nite-differences:

∂qj
∂t

= Fj(q)

8 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Spatial and Temporal Discretizations

•  All the methods discussed yesterday are linear:
For a linear differential equation (e.g. advection equation)
the function f can be represented as a matrix multiply.

Time evolution
of data point j. “Spatial

discretization”
matrix.

q is the vector
of all discrete
data values..

∂q

∂t
= Aq

9 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Spatial and Temporal Discretizations

A =
u

2∆x





0 −1 0 0 0 +1
+1 0 −1 0 0 0
0 +1 0 −1 0 0
0 0 +1 0 −1 0
0 0 0 +1 0 −1
−1 0 0 0 +1 0





∂qj
∂t

=
u

2∆x
qj−1 −

u

2∆x
qj+1

•  Example from !nite-differences:
∂q

∂t
= Aq

10 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Spatial and Temporal Discretizations

A =
u

2∆x





0 −1 0 0 0 +1
+1 0 −1 0 0 0
0 +1 0 −1 0 0
0 0 +1 0 −1 0
0 0 0 +1 0 −1
−1 0 0 0 +1 0





∂qj
∂t

=
u

2∆x
qj−1 −

u

2∆x
qj+1

•  Example from !nite-differences:
∂q

∂t
= Aq

Matrix is mostly
zeroes!

Banded
structure!

11 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Application to Spatial Discretizations
•  An evolution matrix which consist mostly of zeroes

are referred to as sparse matrices.

•  Finite-difference, !nite-volume, spectral element
methods all (typically) lead to a sparse evolution
matrix.

•  The spectral transform method leads to a dense
evolution matrix. That is, there are very few zeros.

12 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Application to Spatial Discretizations
•  As the accuracy of a numerical method increases,

there are fewer zeros in the evolution matrix (they
make use of more information).

•  That is, accuracy implies the need for a dense matrix.

•  But! A more dense matrix is more computationally
expense to apply in calculations.

•  Hence, there is a trade-off between accuracy and
efficiency.

Part 2

Explicit / Implicit Methods

14 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

The Time Step

∂q

∂t
= Aq

Integrate these discretizations with respect to time:

∂q

∂t
= F(q)

qn+1 − qn =

� tn+1

tn
Aqdt qn+1 − qn =

� tn+1

tn
F(q)dt

15 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

The Time Step

qn+1 − qn =

� tn+1

tn
Aqdt

qn+1 − qn =

� tn+1

tn
F(q)dt

16 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

The Time Step
Consider the non-linear discretization
of the evolution equation.

qn+1 − qn =

� tn+1

tn
F(q)dttn+1

tn

Time

xj

qn+1
j

qnj

Space

17 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

A First Explicit Scheme
Non-linear discretization.

qn+1 − qn =

� tn+1

tn
F(q)dt

tn+1

tn

Time

xj

qn+1
j

qnj

Space

� tn+1

tn
F(q)dt ≈ ∆t F(qn)

qn+1 = qn +∆t F(qn)

∆t = tn+1 − tn

18 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

A First Explicit Scheme
Non-linear discretization.

qn+1 − qn =

� tn+1

tn
F(q)dt

tn+1

tn

Time

xj

qn+1
j

qnj

Space

qn+1 = qn +∆t F(qn)

Under the explicit discretization, the unknown
is written explicitly in terms of known values.

∆t = tn+1 − tn

19 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

A First Implicit Scheme
Non-linear discretization.

qn+1 − qn =

� tn+1

tn
F(q)dt

tn+1

tn

Time

xj

qn+1
j

qnj

Space

� tn+1

tn
F(q)dt ≈ ∆t F(qn+1)

qn+1 = qn +∆t F(qn+1)

∆t = tn+1 − tn

20 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

A First Implicit Scheme
Non-linear discretization.

qn+1 − qn =

� tn+1

tn
F(q)dt

tn+1

tn

Time

xj

qn+1
j

qnj

Space

Under the implicit discretization, one needs to
solve a system of equations to !nd qn+1.

qn+1 = qn +∆t F(qn+1)

∆t = tn+1 − tn

21 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

A First Implicit Scheme
In the linear case, the backward
Euler method simpli!es to

qn+1 − qn =

� tn+1

tn
Aqdtqn+1 = qn +∆t A qn+1

We can directly rewrite this in terms of qn+1:

qn+1 = (I −∆t A)−1qn

Solving the linear system is
potentially an expensive
operation.

22 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

A First Implicit Scheme

In the non-linear case, we can also
linearize the update:

qn+1 − qn =

� tn+1

tn
F(q)dt

F(qn+1) ≈ F(qn) +
dF

dq
(qn+1 − qn)

qn+1 = qn +∆t F(qn+1)

qn+1 = qn +∆t

�
I −∆t

dF

dq
(qn)

�−1

F(qn)

23 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Implicit / Explicit Methods
Q: Clearly the explicit method is
signi!cantly more straightforward
to evaluate. Why would we choose
an implicit method?

A: Stability! We will see this more
later, but the basic difference is as
follows:

qn+1 = qn +∆t F(qn+1)

qn+1 = qn +∆t F(qn)

•  Implicit schemes have no limit on the size of the time step size .
However, a larger time step size is less accurate. Also: Implicit
schemes generally require global communication.

•  Explicit schemes impose a (strict) limit on the time step size .
Exceeding this limit will cause the method to “blow up”.

∆t

∆t

24 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Accuracy

tn+1tn
Time

F(q(xj , t)) � tn+1

tn
F(q(xj , t))dt

25 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Accuracy

tn+1tn

� tn+1

tn
F(q(xj , t))dt

tn+1tn

Forward Euler Backward Euler

� tn+1

tn
F(q)dt ≈ ∆t F(qn)

� tn+1

tn
F(q)dt ≈ ∆t F(qn+1)

F(q(xj , t))

26 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Accuracy
Forward Euler Backward Euler

Both the forward Euler method and backward Euler method are !rst-
order accurate: They are only exact when F is a constant.

First-order accuracy is typically insufficient. We need to do better.

F(q(xj , t))

27 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Leap Frog
The leap frog scheme is a traditional second-order accurate explicit
method. This means that the integral is exact if F is either constant or
linear in time.

tn+1

tn

Time

xj

qn+1
j

qnj

Space

tn−1

qn+1 − qn−1 =

� tn+1

tn−1

F(q)dt

qn−1
j

Leap frog requires knowledge of
q from two time levels prior to
the unknown level.

28 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Accuracy of Leap Frog

Leap Frog

Second-order accuracy for the leap frog method is
attained by using the midpoint value.

F(q(xj , t))

tn+1tntn−1

qn+1 − qn−1 =

� tn+1

tn−1

F(q)dt

29 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Leap Frog
The leap frog scheme has traditionally been used in combination with the
spectral transform method.

tn+1

tn

Time

xj

qn+1
j

qnj

Space

tn−1 qn−1
j

The leap frog scheme possesses a
computational mode since the odd and even
time levels can separate.

This is usually !xed by using off-centering
(Asselin !ltering)

Part 3

Runge-Kutta Methods

31 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Runge-Kutta Methods
Runge-Kutta methods are a popular method for attaining high-order
accuracy in time without the need to store data from multiple time steps.

tn+1

tn

Time

xj

qn+1
j

qnj

Space

•  Runge-Kutta methods are multi-stage, which
means in order to advance by the
function F must be evaluated multiple
times.

∂q

∂t
= F(q)

∆t

32 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Predictor / Corrector
The second-order accurate predictor-corrector method is one of the most
basic Runge-Kutta methods.

tn+1

tn

Time

xj

qn+1
j

qnj

Space

A !rst-order approximation to is !rst
computed (prediction step):

q∗j

qn+1
j

q∗ = qn +∆t F(qn)

A second-order correction is then computed:

qn+1 =
1

2
qn +

1

2
q∗ +

∆t

2
F(q∗)

33 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Predictor / Corrector
The predictor corrector scheme can also be written as follows:

qn+1 = qn +
∆t

2
F(qn) +

∆t

2
F(q∗)

F(q(xj , t))

tn+1
tn

qn+1 = qn +

� tn+1

tn
F(q)dt

q∗jqnj

34 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Strong Stability Preserving RK3 (SSPRK3)
One of the more popular Runge-Kutta methods is the SSPRK3 scheme,
which is a third-order accurate, three stage Runge-Kutta method.

tn+1

tn

Time

xj

qn+1
j

qnj

Space

tn+1/2

q(1)j

q(2)j

q(1)
j = qn

j +∆tF(qn)

q(2)
j =

3

4
qn
j +

1

4
q(1)
j +

∆t

4
F(q(1))

qn+1
j =

1

3
qn
j +

2

3
q(2)
j +

2∆t

3
F(q(2))

Stage one:

Stage two:

Final update:

35 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Strong Stability Preserving RK3 (SSPRK3)
Writing as a one-stage update equation:

qn+1 = qn +

� tn+1

tn
F(q)dt

qn+1
j = qn

j +
∆t

6

�
F(qn) + 4 F(q(2)) + F(q(1))

�

F(q(xj , t))

tn+1tn tn+1/2

qnj q(1)j

q(2)j

36 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Synchronized Leap Frog
The CAM Spectral Element (CAM-SE) model uses a Runge-Kutta scheme
closely modeled on the leap frog scheme discussed earlier:

tn+1

tn

Time

xj

qn+1
j

qnj

Space

q(1)j

q(2)j

Stage one:

Stage k+1:

Final update:

q(1)
j = qn

j +
∆t�

2
F(qn

j)

q(k+1) = q(k−1)
j +∆t�F(q(k)

j)

q(0) = qn
j

tn +∆t�/2

tn +∆t�

tn + 3∆t�/2 q(3)j

qn+1 = q(N)

Part 4

Lagrangian and
Semi-Lagrangian Methods

38 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Advection of a Tracer

What does this mean?

q	

 Tracer mixing ratio is constant
following a fluid parcel.

Dq

Dt
= 0

Lagrangian Frame

Recall Lagrangian reference frame (follows a $uid parcel).

39 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Fully Lagrangian Transport Methods
•  The Lagrangian frame is, in some sense, the most natural way to think

about the advection equation.

Dq

Dt
= 0

Lagrangian Frame

•  But: In practice it is difficult to follow around
$uid parcels in presence of deforming $ow.

Source: R.A. Pielke
and M. Uliasz (1997).

40 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Semi-Lagrangian Transport Methods
•  Instead: Semi-Lagrangian methods follow a $uid parcel in time, then

remap to a regular mesh.

Evolve Remap

Remap De-evolve

tn
tn+1 tn+1

tn+1

tn
tn

41 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

The $ux across the
highlighted edge is

desired.

Step 1: Project velocity
!eld backwards in time

to obtain a “$ux area.”

Step 2: Integrate over
the $ux area to obtain
the $ux through the

edge.

Flux-Form Semi-Lagrangian Transport

42 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Semi-Lagrangian Schemes Deformational Flow Test

Part 5

Stability
•  Eigenmode Analysis

44 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Introduction to Stability
Numerical instability in a high-frequency computational mode:

45 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Introduction to Stability

•  Recall de!nition of eigenvectors of B: If v is an eigenvector of B, then
it satis!es where is the (complex) eigenvalue
associated with v.

•  Theory: If B is well behaved, then it will have N eigenvector /
eigenvalue pairs, where N is the number of free parameters.

qn+1 = Bqn

Bv = λv λ

qn =
N�

i=1

ani vi

Apply both time and space discretization:

46 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Introduction to Stability
qn+1 = Bqn

qn =
N�

i=1

ani vi

•  Substitute this solution into the update equation:

qn+1 =
N�

i=1

ani Bvi

qn+1 =
N�

i=1

λia
n
i vi

•  Use properties of eigenvectors:

vi eigenvectors of B, with
associated eigenvalues λi.

47 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Introduction to Stability
qn+1 = Bqn

qn =
N�

i=1

ani vi

where

qn+1 =
N�

i=1

an+1
i vi

an+1
i = λia

n
i

vi eigenvectors of B, with
associated eigenvalues λi.

48 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Introduction to Stability
qn+1 = Bqn

qn =
N�

i=1

ani vi

where

Take absolute values:

qn+1 =
N�

i=1

an+1
i vi

an+1
i = λia

n
i

|an+1
i | = |λi| |ani |

|λi| > 1? |λi| < 1?

vi eigenvectors of B, with
associated eigenvalues λi.

49 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Introduction to Stability
qn+1 = Bqnvi eigenvectors of B, with

associated eigenvalues λi.

|λi| > 1 Instability! The corresponding computational
mode will blow up.

|λi| ≤ 1 Stable! The corresponding computational mode
will either maintain its amplitude, or will decay with
time (lose energy?)

50 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Stability: An Example
 qn+1 = BqnExample: Forward Euler plus

upwinding (!rst-order !nite volume).

Corresponding evolution matrix:

B =





1− ν . . . ν
ν 1− ν

ν 1− ν
. . .

. . .





qn+1
j = qnj +

u∆t

∆x
(qnj − qnj−1) ν =

u∆t

∆x

(vk)j = exp(ijk)

Eigenvectors and eigenvalues:

λk = 1− ν(1 + exp(−ik))

51 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Stability: An Example
qn+1 = BqnExample: Forward Euler plus

upwinding (!rst-order !nite volume).

qn+1
j = qnj +

u∆t

∆x
(qnj − qnj−1) ν =

u∆t

∆x

(vk)j = exp(ijk)

Eigenvectors and eigenvalues:

λk = 1− ν(1 + exp(−ik))

Absolute value of eigenvalues:

|λk|2 = 1− 2ν(ν − 1)(cos(k)− 1)

max
k

|λk|2 = 1 + 4ν(ν − 1)

Maximum eigenvalue:

52 Paul Ullrich (UM/UCD) Numerical Methods II August 1, 2012

Stability: An Example
qn+1 = BqnExample: Forward Euler plus

upwinding (!rst-order !nite volume).

qn+1
j = qnj +

u∆t

∆x
(qnj − qnj−1) ν =

u∆t

∆x

max
k

|λk|2 = 1 + 4ν(ν − 1)

Maximum eigenvalue:

0 ≤ ν ≤ 1

Thank You

