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5.  Numerical Stability 



Part 1 

Introduction 
•  Dynamic Evolution of the Atmosphere 
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Last Time:  Spatial Discretizations 

•  How do we best represent continuous data when only a 
(very) limited amount of information can be stored? 

Atmospheric Modeling – Question One 

•  How do we best represent continuous data discretely? 

Eulerian Frame 

∂q

∂t
+ u ·∇q = 0

We considered 
this term. 
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This Time:  Temporal Discretizations 

Atmospheric Modeling – Question Two 

Eulerian Frame 

∂q

∂t
+ u ·∇q = 0

Let’s look at 
this term. 

•  How do we best represent the dynamic evolution of the 
atmosphere?  (how to deal with time?) 
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Spatial and Temporal Discretizations 

•  How do we best represent continuous data when only a 
(very) limited amount of information can be stored? 

Atmospheric Modeling – Question One 

Atmospheric Modeling – Question Two 

•  How do we best represent the dynamic evolution of the 
atmosphere?  (how to deal with time?) 

These questions are inherently linked 
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Spatial and Temporal Discretizations 

•  Last time we discretized the spatial component of the 
equations: 

Time evolution 
of data point j. Some function 

applied to all 
other data points. 

q is the vector 
of all discrete 
data values.. 

∂qj
∂t

=
u

2∆x
qj−1 −

u

2∆x
qj+1

•  Example from 
!nite-differences: 

∂qj
∂t

= Fj(q)
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Spatial and Temporal Discretizations 

•  All the methods discussed yesterday are linear: 
For a linear differential equation (e.g. advection equation) 
the function f can be represented as a matrix multiply. 

Time evolution 
of data point j. “Spatial 

discretization” 
matrix. 

q is the vector 
of all discrete 
data values.. 

∂q

∂t
= Aq
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Spatial and Temporal Discretizations 

A =
u

2∆x





0 −1 0 0 0 +1
+1 0 −1 0 0 0
0 +1 0 −1 0 0
0 0 +1 0 −1 0
0 0 0 +1 0 −1
−1 0 0 0 +1 0





∂qj
∂t

=
u

2∆x
qj−1 −

u

2∆x
qj+1

•  Example from !nite-differences: 
∂q

∂t
= Aq
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Spatial and Temporal Discretizations 

A =
u

2∆x





0 −1 0 0 0 +1
+1 0 −1 0 0 0
0 +1 0 −1 0 0
0 0 +1 0 −1 0
0 0 0 +1 0 −1
−1 0 0 0 +1 0





∂qj
∂t

=
u

2∆x
qj−1 −

u

2∆x
qj+1

•  Example from !nite-differences: 
∂q

∂t
= Aq

Matrix is mostly 
zeroes! 

Banded 
structure! 
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Application to Spatial Discretizations 
•  An evolution matrix which consist mostly of zeroes 

are referred to as sparse matrices. 
 

•  Finite-difference, !nite-volume, spectral element 
methods all (typically) lead to a sparse evolution 
matrix. 
 

•  The spectral transform method leads to a dense 
evolution matrix.  That is, there are very few zeros. 



12 Paul Ullrich (UM/UCD) Numerical Methods II  August 1, 2012 

Application to Spatial Discretizations 
•  As the accuracy of a numerical method increases, 

there are fewer zeros in the evolution matrix (they 
make use of more information). 
 

•  That is, accuracy implies the need for a dense matrix. 
 

•  But!  A more dense matrix is more computationally 
expense to apply in calculations. 
 

•  Hence, there is a trade-off between accuracy and 
efficiency. 



Part 2 

Explicit / Implicit Methods 
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The Time Step 

∂q

∂t
= Aq

Integrate these discretizations with respect to time: 

∂q

∂t
= F(q)

qn+1 − qn =

� tn+1

tn
Aqdt qn+1 − qn =

� tn+1

tn
F(q)dt
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The Time Step 

qn+1 − qn =

� tn+1

tn
Aqdt

qn+1 − qn =

� tn+1

tn
F(q)dt
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The Time Step 
Consider the non-linear discretization 
of the evolution equation. 

qn+1 − qn =

� tn+1

tn
F(q)dttn+1

tn

Time 

xj

qn+1
j

qnj

Space 
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A First Explicit Scheme 
Non-linear discretization. 

qn+1 − qn =

� tn+1

tn
F(q)dt

tn+1

tn

Time 

xj

qn+1
j

qnj

Space 

� tn+1

tn
F(q)dt ≈ ∆t F(qn)

qn+1 = qn +∆t F(qn)

∆t = tn+1 − tn
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A First Explicit Scheme 
Non-linear discretization. 

qn+1 − qn =

� tn+1

tn
F(q)dt

tn+1

tn

Time 

xj

qn+1
j

qnj

Space 

qn+1 = qn +∆t F(qn)

Under the explicit discretization, the unknown 
is written explicitly in terms of known values. 

∆t = tn+1 − tn
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A First Implicit Scheme 
Non-linear discretization. 

qn+1 − qn =

� tn+1

tn
F(q)dt

tn+1

tn

Time 

xj

qn+1
j

qnj

Space 

� tn+1

tn
F(q)dt ≈ ∆t F(qn+1)

qn+1 = qn +∆t F(qn+1)

∆t = tn+1 − tn
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A First Implicit Scheme 
Non-linear discretization. 

qn+1 − qn =

� tn+1

tn
F(q)dt

tn+1

tn

Time 

xj

qn+1
j

qnj

Space 

Under the implicit discretization, one needs to 
solve a system of equations to !nd qn+1. 

qn+1 = qn +∆t F(qn+1)

∆t = tn+1 − tn



21 Paul Ullrich (UM/UCD) Numerical Methods II  August 1, 2012 

A First Implicit Scheme 
In the linear case, the backward 
Euler method simpli!es to 

qn+1 − qn =

� tn+1

tn
Aqdtqn+1 = qn +∆t A qn+1

We can directly rewrite this in terms of qn+1: 

qn+1 = (I −∆t A)−1qn

Solving the linear system is 
potentially an expensive 
operation. 
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A First Implicit Scheme 

In the non-linear case, we can also 
linearize the update: 

qn+1 − qn =

� tn+1

tn
F(q)dt

F(qn+1) ≈ F(qn) +
dF

dq
(qn+1 − qn)

qn+1 = qn +∆t F(qn+1)

qn+1 = qn +∆t

�
I −∆t

dF

dq
(qn)

�−1

F(qn)
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Implicit / Explicit Methods 
Q:  Clearly the explicit method is 
signi!cantly more straightforward 
to evaluate.  Why would we choose 
an implicit method? 
 

A: Stability!  We will see this more 
later, but the basic difference is as 
follows: 

qn+1 = qn +∆t F(qn+1)

qn+1 = qn +∆t F(qn)

•  Implicit schemes have no limit on the size of the time step size         .  
However, a larger time step size is less accurate.  Also: Implicit 
schemes generally require global communication. 

•  Explicit schemes impose a (strict) limit on the time step size        .  
Exceeding this limit will cause the method to “blow up”. 

∆t

∆t
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Accuracy 

tn+1tn
Time 

F(q(xj , t)) � tn+1

tn
F(q(xj , t))dt
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Accuracy 

tn+1tn

� tn+1

tn
F(q(xj , t))dt

tn+1tn

Forward Euler Backward Euler 

� tn+1

tn
F(q)dt ≈ ∆t F(qn)

� tn+1

tn
F(q)dt ≈ ∆t F(qn+1)

F(q(xj , t))



26 Paul Ullrich (UM/UCD) Numerical Methods II  August 1, 2012 

Accuracy 
Forward Euler Backward Euler 

Both the forward Euler method and backward Euler method are !rst-
order accurate:  They are only exact when F is a constant. 
 

First-order accuracy is typically insufficient.  We need to do better. 

F(q(xj , t))
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Leap Frog 
The leap frog scheme is a traditional second-order accurate explicit 
method.  This means that the integral is exact if F is either constant or 
linear in time. 

tn+1

tn

Time 

xj

qn+1
j

qnj

Space 

tn−1

qn+1 − qn−1 =

� tn+1

tn−1

F(q)dt

qn−1
j

Leap frog requires knowledge of 
q from two time levels prior to 
the unknown level. 
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Accuracy of Leap Frog 

Leap Frog 

Second-order accuracy for the leap frog method is 
attained by using the midpoint value. 

F(q(xj , t))

tn+1tntn−1

qn+1 − qn−1 =

� tn+1

tn−1

F(q)dt
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Leap Frog 
The leap frog scheme has traditionally been used in combination with the 
spectral transform method. 

tn+1

tn

Time 

xj

qn+1
j

qnj

Space 

tn−1 qn−1
j

The leap frog scheme possesses a 
computational mode since the odd and even 
time levels can separate. 
 

This is usually !xed by using off-centering 
(Asselin !ltering) 



Part 3 

Runge-Kutta Methods 
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Runge-Kutta Methods 
Runge-Kutta methods are a popular method for attaining high-order 
accuracy in time without the need to store data from multiple time steps. 

tn+1

tn

Time 

xj

qn+1
j

qnj

Space 

•  Runge-Kutta methods are multi-stage, which 
means in order to advance by           the 
function F must be evaluated multiple 
times. 

∂q

∂t
= F(q)

∆t
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Predictor / Corrector 
The second-order accurate predictor-corrector method is one of the most 
basic Runge-Kutta methods. 

tn+1

tn

Time 

xj

qn+1
j

qnj

Space 

A !rst-order approximation to               is !rst 
computed (prediction step): 

q∗j

qn+1
j

q∗ = qn +∆t F(qn)

A second-order correction is then computed: 

qn+1 =
1

2
qn +

1

2
q∗ +

∆t

2
F(q∗)



33 Paul Ullrich (UM/UCD) Numerical Methods II  August 1, 2012 

Predictor / Corrector 
The predictor corrector scheme can also be written as follows: 

qn+1 = qn +
∆t

2
F(qn) +

∆t

2
F(q∗)

F(q(xj , t))

tn+1
tn

qn+1 = qn +

� tn+1

tn
F(q)dt

q∗jqnj
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Strong Stability Preserving RK3 (SSPRK3) 
One of the more popular Runge-Kutta methods is the SSPRK3 scheme, 
which is a third-order accurate, three stage Runge-Kutta method. 

tn+1

tn

Time 

xj

qn+1
j

qnj

Space 

tn+1/2

q(1)j

q(2)j

q(1)
j = qn

j +∆tF(qn)

q(2)
j =

3

4
qn
j +

1

4
q(1)
j +

∆t

4
F(q(1))

qn+1
j =

1

3
qn
j +

2

3
q(2)
j +

2∆t

3
F(q(2))

Stage one: 

Stage two: 

Final update: 
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Strong Stability Preserving RK3 (SSPRK3) 
Writing as a one-stage update equation: 

qn+1 = qn +

� tn+1

tn
F(q)dt

qn+1
j = qn

j +
∆t

6

�
F(qn) + 4 F(q(2)) + F(q(1))

�

F(q(xj , t))

tn+1tn tn+1/2

qnj q(1)j

q(2)j
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Synchronized Leap Frog 
The CAM Spectral Element (CAM-SE) model uses a Runge-Kutta scheme 
closely modeled on the leap frog scheme discussed earlier: 

tn+1

tn

Time 

xj

qn+1
j

qnj

Space 

q(1)j

q(2)j

Stage one: 

Stage k+1: 

Final update: 

q(1)
j = qn

j +
∆t�

2
F(qn

j )

q(k+1) = q(k−1)
j +∆t�F(q(k)

j )

q(0) = qn
j

tn +∆t�/2

tn +∆t�

tn + 3∆t�/2 q(3)j

qn+1 = q(N)



Part 4 

Lagrangian and 
Semi-Lagrangian Methods 
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Advection of a Tracer 

What does this mean? 

 

q	

 Tracer mixing ratio is constant 
following a fluid parcel. 

Dq

Dt
= 0

Lagrangian Frame 

Recall Lagrangian reference frame (follows a $uid parcel). 
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Fully Lagrangian Transport Methods 
•  The Lagrangian frame is, in some sense, the most natural way to think 

about the advection equation. 

Dq

Dt
= 0

Lagrangian Frame 

•  But:  In practice it is difficult to follow around 
$uid parcels in presence of deforming $ow. 

Source: R.A. Pielke 
and M. Uliasz (1997). 
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Semi-Lagrangian Transport Methods 
•  Instead:  Semi-Lagrangian methods follow a $uid parcel in time, then 

remap to a regular mesh. 

Evolve Remap 

Remap De-evolve 

tn
tn+1 tn+1

tn+1

tn
tn
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The $ux across the 
highlighted edge is 

desired. 

Step 1:  Project velocity 
!eld backwards in time 

to obtain a “$ux area.” 

Step 2: Integrate over 
the $ux area to obtain 
the $ux through the 

edge. 

Flux-Form Semi-Lagrangian Transport 
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Semi-Lagrangian Schemes Deformational Flow Test 



Part 5 

Stability 
•  Eigenmode Analysis 
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Introduction to Stability 
Numerical instability in a high-frequency computational mode: 
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Introduction to Stability 

•  Recall de!nition of eigenvectors of B:  If v is an eigenvector of B, then 
it satis!es                         where      is the (complex) eigenvalue 
associated with v.  
 

•  Theory:  If B is well behaved, then it will have N eigenvector / 
eigenvalue pairs, where N is the number of free parameters. 

qn+1 = Bqn

Bv = λv λ

qn =
N�

i=1

ani vi

Apply both time and space discretization: 
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Introduction to Stability 
qn+1 = Bqn

qn =
N�

i=1

ani vi

•  Substitute this solution into the update equation: 

qn+1 =
N�

i=1

ani Bvi

qn+1 =
N�

i=1

λia
n
i vi

•  Use properties of eigenvectors: 

vi eigenvectors of B, with 
associated eigenvalues λi. 
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Introduction to Stability 
qn+1 = Bqn

qn =
N�

i=1

ani vi

where 

qn+1 =
N�

i=1

an+1
i vi

an+1
i = λia

n
i

vi eigenvectors of B, with 
associated eigenvalues λi. 



48 Paul Ullrich (UM/UCD) Numerical Methods II  August 1, 2012 

Introduction to Stability 
qn+1 = Bqn

qn =
N�

i=1

ani vi

where                                   

Take absolute values:   

qn+1 =
N�

i=1

an+1
i vi

an+1
i = λia

n
i

|an+1
i | = |λi| |ani |

|λi| > 1? |λi| < 1?

vi eigenvectors of B, with 
associated eigenvalues λi. 
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Introduction to Stability 
qn+1 = Bqnvi eigenvectors of B, with 

associated eigenvalues λi. 

|λi| > 1 Instability!  The corresponding computational 
mode will blow up. 

|λi| ≤ 1 Stable!  The corresponding computational mode 
will either maintain its amplitude, or will decay with 
time (lose energy?) 
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Stability: An Example 
 qn+1 = BqnExample:  Forward Euler plus 

upwinding (!rst-order !nite volume). 

Corresponding evolution matrix: 

B =





1− ν . . . ν
ν 1− ν

ν 1− ν
. . .

. . .





qn+1
j = qnj +

u∆t

∆x
(qnj − qnj−1) ν =

u∆t

∆x

(vk)j = exp(ijk)

Eigenvectors and eigenvalues: 

λk = 1− ν(1 + exp(−ik))



51 Paul Ullrich (UM/UCD) Numerical Methods II  August 1, 2012 

Stability: An Example 
qn+1 = BqnExample:  Forward Euler plus 

upwinding (!rst-order !nite volume). 

qn+1
j = qnj +

u∆t

∆x
(qnj − qnj−1) ν =

u∆t

∆x

(vk)j = exp(ijk)

Eigenvectors and eigenvalues: 

λk = 1− ν(1 + exp(−ik))

Absolute value of eigenvalues: 

|λk|2 = 1− 2ν(ν − 1)(cos(k)− 1)

max
k

|λk|2 = 1 + 4ν(ν − 1)

Maximum eigenvalue: 
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Stability: An Example 
qn+1 = BqnExample:  Forward Euler plus 

upwinding (!rst-order !nite volume). 

qn+1
j = qnj +

u∆t

∆x
(qnj − qnj−1) ν =

u∆t

∆x

max
k

|λk|2 = 1 + 4ν(ν − 1)

Maximum eigenvalue: 

0 ≤ ν ≤ 1



Thank You 


