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What do clouds do?

• Precipitate

• Scatter, absorb, and emit radiation

• Transport things vertically

• Energy

• Water

• Momentum

• Trace species

• Faciliate chemical reactions
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Coupling the Energy and Water Cycles

• Globally:

‣ The atmosphere is cooled radiatively 
and warmed by latent heat release.

‣ The surface is warmed radiatively and 
cooled by evaporation.



Coupling the Energy and Water Cycles

• Globally:

‣ The atmosphere is cooled radiatively 
and warmed by latent heat release.

‣ The surface is warmed radiatively and 
cooled by evaporation.

• Locally:

‣ The atmosphere is warmed radiatively 
by precipitating cloud systems.

‣ The surface is cooled radiatively by 
precipitating cloud systems.



Cloud regimes

Figure from Bjorn Stevens
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Marine stratocumulus clouds



Deep convection

• Conditional instability is necessary but not 
sufficient. 

• Vertical transports are powerful and important.

• The fractional area covered by convective 
updrafts is very small.



ITCZ



Scale Separation

“Consider a horizontal area … large enough to contain an 
ensemble of cumulus clouds, but small enough to cover 
only a fraction of a large-scale disturbance. The existence 
of such an area is one of the basic assumptions of this 
paper.”

-- AS 74



Heating and drying

An overbar represents an average over a grid cell area,
at a given height and time.

Q1 ≡ LC − 1
ρ

∂
∂z
(ρ ′w ′s )− 1

ρ
∇H ⋅(ρVH

′ ′s )+QR

Q2 ≡ LC + L
ρ

∂
∂z
(ρ ′w qv′ )+

L
ρ
∇H ⋅(ρVH

′qv′ )



Vertical flux divergences dominate

Horizontal and vertical fluxes are comparable in 
magnitude.
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300 m

100 km

Vertical fluxes converge and diverge over much shorter 
distances than horizontal fluxes.
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Horizontal and vertical fluxes are comparable in 
magnitude.



Toy updrafts & downdrafts



Mass fluxes
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A critical simplifying assumption

 σ c«1,  and σ ≅ 1

h ≅ h

It follows that the “environment” has almost the same 
thermodynamic properties as the grid-cell average. 

Because this is true, we can equate the heating and 
drying of the environment with the heating and drying 
of the grid-scale average, and we can avoid computing 
sigma.

The simple reasons for this observed fact were explained 
by Jacob Bjerknes in a 1938 paper.



Cumulus entrainment

Detrainment

Cloud-top 
entrainment

Turbulence

Lateral 
entrainment



Entraining plumes
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How to determine the mass flux?

Convection converts CAPE into convective 
kinetic energy.

If this process is “fast,” then CAPE is destroyed 
as fast as it is generated.

This “quasi-equilibrium” assumption can be used 
to determine the mass flux by solving a linear 
algebraic system.

A better approach is to choose a mass flux that 
pushes the CAPE towards zero on a short but  
finite time scale.

“Relaxation”, as in relaxed Arakawa-Schubert
Prognostic closure



Sources and sinks of CAPE

Sources -- anything that steepens the lapse 
rate or moistens the lower troposphere

Surface fluxes
Radiative cooling aloft
Large-scale rising motion
Warm advection down low
Cold advection aloft

Sinks

Convective warming
Convective drying



Marine stratocumulus clouds
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Wimpy clouds, but difficult

Marine stratocumulus cloud layers are just a few 
hundred meters deep.

They are capped by a strong inversion that is even 
thinner.

The in-cloud turbulence is driven mainly by very 
strong radiative cooling confined to an extremely 
thin layer.

It is virtually impossible to explicitly resolve these 
features in a large-scale model.



Figure from Bjorn Stevens

“Models of cloud-topped mixed layers”



What is entrainment?

• Clouds don’t entrain.

• Turbulence entrains.

• Clouds are turbulent.

Entrainment is the active annexation of quiet fluid by turbulence.



“Models of cloud-topped mixed layers”
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One last technological development that moti-
vated a new observational attack on the entrainment
problem was the availability of the National Science
Foundation/National Center for Atmospheric
Research (NSF/NCAR) C130. Its long range facili-
tates more extensive sampling of more remote lay-
ers, and its large payload enables the delivery of a
greater range of scientific instrumentation to the tar-
get area.

THE FLIGHTS. The field program took place in
July 2001. Remotely sensed data, forecast model out-
put, and other data of opportunity were collected and
archived for the entire month, and research flights
took place from 7 to 28 July 2001. Flight operations
were based out of North Island Naval Air Station, just

across the bay from San Diego. The target area was
approximately 1 h west southwest of San Diego as il-
lustrated in Fig. 1. The field program consisted of
seven entrainment research flights and two radar re-
search flights.

The entrainment flights were designed following
a template illustrated with the aid of Fig. 2. Although
no single flight followed this schematic exactly, its es-
sential elements were incorporated into every entrain-
ment flight. These elements included circles to esti-
mate divergences and fluxes concurrently (see also the
flight track in Fig. 1) and long legs to reduce sampling
errors in fluxes and other higher-order statistics. The
stacking of these legs can allow better estimates of
cloud-top or surface fluxes. In addition, frequent pro-
filing of the layer facilitated evaluation of the layer

FIG. 2. DYCOMS-II flight strategy. Symbols in bottom panel refer to total water mixing ratio qt; its change
across cloud top, ∆qt; liquid water potential temperature, θl; its change across cloud top, ∆θl; and liquid
water mixing ratio ql.

Figure from Stevens et al. (2003)

(Fqt )B = −EΔqt (Fθl )B = −EΔθl +ΔR
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Slow entrainment driven by cloud-top evaporation

Movie by Tak Yamaguchi
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Why are Sc clouds so prevalent 
over the eastern subtropical oceans?
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Current issues in conventional 
cloud parameterizations

Microphysics

How many water species?
Aerosols?

Convective entrainment

How many cloud “types”?
What controls entrainment?

Convective closures

Coupling deep convection with 
the boundary layer

Updrafts?
Downdrafts?



Conclusions

• Clouds matter for radiation, precipitation, vertical 
transports, and chemistry.

• Convection parameterizations rely on the fact that the 
fractional area covered by updrafts is very small.

• The convective mass flux can be determined by assuming 
that CAPE is consumed as fast as it is generated.

• Stratocumulus clouds are radiatively important, but don’t 
rain much.

• Stratocumulus clouds are vertically thin but complicated 
and hard to simulate realistically.


