Principal of stochastic physical
parameterizations: what is their promise?
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Uncertainty Prediction Across the Scales

- with emphasis on stochastic parameterizations
But also:
- how to design and evaluate (multi-model) ensembles

- uncertainty in weather vs climate



Key points

There is model uncertainty in weather and climate prediction.

It is essential to represent model uncertainty.

In weather (NWP) the problem is well defined, because we
can use observations to determine model uncertainty.

On the climate scales the estimation of model uncertainty is
more challenging, since verifying data is limited

Stochastic parameterizations are starting to become a
alternative to other model-error representations



Multiple scales of motion
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The closure problem

The “spectral gap”
argument (Stull 1960)
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Eddy Frequency & Time Period

Fig. 2.2 Schematic spectrum of wind speed near the ground estimated
from a study of Van der Hoven (1957).
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Kinetic energy spectra

Wavenumber (radians m-1)
10-6 10-5 104 10-3 10-2
108 | | | |
107~ :
ZONAL MERIDIONAL
WIND  # WIND

106 —
¥
5 5
101
2
g 4
3104
B
3]
& 103k
&10

1021—

101

| L 1 |
104 103 102 101 100 10~
Nastrom and Gage, 1985 e ength (o




Limited vs unlimited predictability in

a) SQG b) 2DV
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FIG. 1. Error energy per unit wavenumber, K~ 'Z(K, ) for t = 0, 2 in steps of 0.1 for (a) SQG
turbulence and (b) 2DV turbulence. The heavy solid line indicates the base-state kinetic
energy spectra per unit wavenumber, K~ 'X(K), which has a —5/3 slope for SQG and a —3

slope for 2DV.
Rotunno and Snyder, 2008

see also: Tribbia and Baumhefner 2004



Spectral gap not necessary for stochastic
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Kinetic energy spectra
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ECMWF Workshop on Model Uncertainty,

20 — 24 June 2011

Recommendation of Working Group 2:
Merits and drawbacks of different methods of representing model

uncertainty

Design concepts for the systematic comparison of different schemes
representing model uncertainty across a range of space and time-scales,
both in full and hierarchically less complex models (including small planet).

The principles the different model uncertainty schemes are based upon
should be stated (bottom-up)

The effects of different schemes generating spread should be compared and
validated (top-down).

4  Include uncertainty resulting from the dynamical core and physics- dynamics
interactions in the assessment of model uncertainty.



ECMWF Workshop on Model Uncertainty,

20 — 24 June 2011

4. Include uncertainty resulting from the dynamical core and physics-
dynamics interactions in the assessment of model uncertainty.

In addition to uncertainty arising from the need to represent and parameterize physical processes,
uncertainty arises from the truncation error of the different dynamical cores and, more importantly,
interactions between the physics and the dynamics. While the difference in precision and accuracy
between different dynamical cores might be small compared to typical physical parameterization
errors, there is increasing evidence that the same physics parameterization might behave differently
when coupled to different dynamical cores (e.g. Reed and Jablonowski, 2011). The study of
uncertainty related to using different dynamical cores coupled to physics-packages is an emerging
field in the “dynamical core community” and their findings should be in the awareness of the

ECMWF Workshop on Model Uncertainty, 20 — 24 June 2011 xiii

WORKING GROUP REPORTS

“uncertainty community”, e.g. as part of the systematic intercomparison proposed in recommendation
(1). A separate source of dynamical model error is associated with truncation error per se and can lead
to different kinetic energy spectra in the model and potentially different predictability behavior
(limited vs unlimited).
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Model error in NWP

Represent/sample
subgrid-scale
fluctuations (SPPT)

Represent
structural model
error (SKEBS)

RMS error

ensemble




Representing model error in ensemble

% The multi-parameter approach: each ensemble member
uses the control physics, but the parameters are varied
from one ensemble member to the next

% The multi-parameterization approach: each ensemble
member uses a different set of parameterizations (e.g. for
cumulus convection, planetary boundary layer,
microphysics, short-wave/long-wave radiation, land use,
land surface)

% Stochastic parameterizations: each ensemble member is
perturbed by a stochastic forcing term that represents the
statistical fluctuations in the subgrid-scale fluxes
(stochastically perturbed physics tendencies) as well as
altogether unrepresented interactions between the
resolved an unresolved scale (stochastic kinetic energy
backscatter)



Using NWP to constrain climate
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Sources for uncertainty in weather and climate

Weather Climate

Large sensitivity to initial conditions Smaller sensitivity to initial
conditions
Parameter perturbations insufficient

Parameter perturbations effective
Stochastic parameterizations well

established Stochastic parameterizations not

. . . . (yet) well established
Multi-models very skillful, but impractical

Multi-model = model of opportunity,

Boundary conditions secondary(maybe for (generated by different centers)

regional models)

Biases large, but not as limiting as in Bounda-ry and forcing essential
climate (scenarios)

Large biases



Dependency of Multi-Models

If many models agree,
how do you know if they
are correct or just

related?
- Also relevant DMIP
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Figure 2. Hierarchical clustering of the CMIP3, CMIP2 and QUMP perturbed physics ensemble for (left) surface temper-
ature and (right) precipitation in the model control state. Models developed by the UK Metoffice Hadley Centre are shown

in red, models developed by NCAR are marked in blue.

Masson and Knutti, 2008




Stochastic parameterizations in weather

“I believe the ultimate climate
models...will be stochastic,
1.e. random numbers will
appear somewhere in the time
derivatives.” (Lorenz, 1975)




Stochastic parameterization schemes

Stochastic kinetic-energy Stochastically perturbed
backscatter scheme (SKEBBS) parameterization scheme (SPPT)
Rationale: A fraction of the Rationale: Especially as
dissipated kinetic-energy is resolution increases, the
scattered upscale and equilibrium assumption is no
available as forcing for the longer valid and fluctuations
resolved flow. of the subgrid-scale state
should be sampled.
oX
—=D,+ P, + K, +0F,
ot | |
Resolved scales Horizontal
= “dynamics” diffusion
| Local tendency | Unresolved scales Stochastic

= “physics” perturbations

(cloud microphysics, ...)




Potential of stochastic parameterization

Stochastic
parameterizations can
change the mean and
variance of a PDF

Impacts variability of
model (e.g. internal
variability of the
atmosphere)

Impacts systematic error
(e.g. blocking
precipitation error)

Potential

Weakinoise

Unimodal

Strong noise

Multi-modal



Stochastic kinetic-energy backscatter

Rationale: A fraction of the dissipated energy is scattered upscale and acts as
forcing for the resolved-scale flow

du/dt = du

/dt + du,, .. /dt

phys stoch

Total Dissipation rate.

Spectral Markov chain: temporal
and spatial correlations prescribed



Stochastic kinetic-energy backscatter

Assume a streamfunction perturbation in spherical harmonics representation

() A) Z Z L;,m Pn m(/’) A

Jm=—n

Assume furthermore that each coefficient evolves according to the spectral Markov
process

L;,’ "t+1)=(1—a) :,' ")+ gn Vael(t e(t

Find the wavenumber dependent noise amplitudes gn =10 n¥

so that prescribed kinetic energy dE is injected into the flow

1 n
4ma? 2 2
b = ( ;ra,Fa dE’) with [' = Z n(n+1)(2n + 1n®

n=ni



Representing initial uncertainty by an

Represent initial uncertainty
by ensemble of states

RMS error

Flow-dependence:
2 Predictable states

should have small — T
ensemble spread - I~ M
\.

72 Unpredictable states
should have large
ensemble spread

Ensemble spread should
grow like RMS error
ensemble mean {>
True atmospheric state
should be indistinguishable
from ensemble system

analysis



Underdispersivness of ensemble systems
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The RMS error grows faster than
the spread

80

== RMS error of ensemble mean

»Ensemble is underdispersive

> Ensemble forecast is
overconfident

»Underdispersion is a form of
model error

RMS errors

> Forecast error = initial error +
model error +
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Forecast days

Buizza et al., 2004




Verification against Observations



Spread Error Con5|stency in WRF
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Will uncertainty decrease as model

ng?/




Will uncertainty decrease as model

One can speculate if there will be a need for stochastic
parameterizations as computational resources allow us
to increase horizontal resolutions of weather and cli-
mate models to cloud-resolving levels. To the extent that
stochastic parameterizations represent subgrid-scale fluc-
tuations around the equilibrium state, they can be expec-
ted to play an even more important role as resolution
increases. Insofar as they represent the upscale effect of
unresolved dynamical processes, one would hope that
their magnitude will become smaller as more and more
interactions are explicitly resolved. Presumably this will
depend partly on the capability of next-generation cli-
mate models to capture the shallower “—3/3" slope of the
atmospheric energy spectrum in addition to the “—3”
geostrophic regime.
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Potential of stochastic parameterization

Stochastic
parameterizations can
change the mean and
variance of a PDF

Impacts variability of
model (e.g. internal
variability of the
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Potential
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Frequency-
Wavenumber
spectra of OLR
In IFS

NOAA

CNTL

SKEBS

HIGHRES

PHYS

Berner et al. 2012
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Confronting climate models with data:

Spread/Error Relationship of T
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Does accuracy still matter?

“If we want ensemble systems that represent
uncertainty, why should we solve the dynamical
equations with high accuracy?”

Especially when people like me come along and spend
their lives putting random numbers in the equations

G. Shutts, T. Allen, J. Berner, 2008: “Vorticity
confinement”

T. N. Palmer, 2012: “Stochastic processors”

Problem: Is the error bounded?



Key points

There is model uncertainty in weather and climate
prediction.

It is essential to represent model uncertainty.

In weather (NWP) the problem is well defined, because
we can use observations to determine model

uncertainty.

In the climate sciences the estimation of model
uncertainty is more challenging.

Stochastic parameterizations are starting to become a
alternative to other model-error representations






How to design an ensemble system:

Stochastic
Multi-models parameterizations
Each member has different All members have the same
invariant distribution/ underlying distribution
climatology
As the core models improve
Pro: Samples Bias all members improve at the

same time
Con: Not a distribution



