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Data Assimilation merges observations & model predictions
to provide a superior state estimate.

%t = dynamics+ physics+ Ax

Observations of state and storage (temperature, wind, soil
moisture, etfc ) are blended with the state of the system

as forecast by a model based on the previous set of
observations. It provides a dynamically- consistent
estimate of the state of the system using the best blend of
past, current, and perhaps future observations.
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Experience mainly in atmosphere; developing in ocean and

land surface. NCAR n




Data assimilation system
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Medium-range forecast

¢ The observations are used to correct errors in the
short forecast from the previous analysis time.

¢ Every 12 hours ECMWF assimilates 7 - 9,000,000
observations to correct the 80,000,000 variables that
define the model's virtual atmosphere.

¢ This is done by a careful 4-dimensional interpolation in
space and time of the available observations; this
operation takes as much computer power as the 10-day

forecast.

ECMWF 2009




Operational four dimensional data assimilation
continually changes as methods and assimilating models
improve, creating huge discontinuities in the implied
climate record.

Reanalysis is the retrospective analysis onto global
grids using a multivariate physically consistent
approach with a constant analysis system.

Reanalysis has been applied to atmospheric data
covering the past five decades. Although the
resulting products have proven very useful,
considerable effort is needed to ensure that reanalysis
products are suitable for climate monitoring

applications.

From: Executive Summary of "The Second Report on the Adequacy of The

Global Observing Systems for Climate in Support of the UNFCCC". \
20 Aug 2003 NCAR k



1) Call for reanalysis:
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Atmospheric Reanalyses

Current atmospheric reanalyses, with the horizontal resolution
(latitude; T159 is equivalent to about 0.8° ), the starting and ending
dates, the approximate vintage of the model and analysis system, and
current status.

Reanalysis Horiz.Res |Dates Vintage Status

NCEP/NCARR1 |T62 1948-present |1995 ongoing

NCEP-DOE R2 |Té62 1979-present | 2001 onhgoing
CFSR (NCEP) T382 1979-present | 2009 thru 2010, ongoing

C20r (NOAA) |[T62 1875-2008 2009 Complete, in progress
ERA-40 T159 1957-2002 2004 done

ERA-Interim T255 1979-present | 2009 ongoing

JRA-25 T106 1979-present | 2006 ohgoing

JRA-55 T319 1958-2012 2009 underway




Reanalysis

A MAJOR challenge remains the
continually changing observing system in
spite of substantial improvements in
bias correction in the latest generation

of reanalyses




The continuing changing obser'vmg system
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Space-based &lobal Observing System Schematic
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Informahon Value Chain

Dissemination ' Awareness * Users
& access 7| &training | "
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Components

GSICS: Global Space-based Intercalibration System

IGDDS: WMO Integrated Global Data Dissemination Service

SCOPE-CM: Sustained Coordinated Processing of
Environmental Satellite Data for Climate Monitoring




Adequate analysis, processing, meta-
data, archival, access, and
management of the resulting data and
the data products create further
challenges in spite of the new
computational tools.

Volumes of data continue to grow and the challenge is to
distill information out of the increasing numbers.

Engineer — Scientist

Sensor
System

Tether




Nearly all satellite datasets contain large spurious
variability associated with changing instruments/
satellites, orbital decay and drift, calibration, and
changing methods of analysis

Only 2 datasets (SSM/I water vapor; MSU satellite

temps) were used in AR4 IPCC to examine trends

Once, the issue was getting a single time series. Now
there is a proliferation and multiple datasets
purporting to be the “"one". All differ, often
substantially.

Reprocessing is essential and should be the hall mark
of any climate observing system
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Equator Crossing Time

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 20068 2008 2010

Example Satellite based observations

- Satellites typically last 3-5 years and have to be replaced
- Orbits decay
* Equator crossing times change
* New satellite orbits differ
» Instrument calibrations drift and can be changed by launch
- Interference can occur from other instruments

* Need is for stable orbits: has improved since 2002
 May require boosters

* Need sufficient sampling of diurnal cycle

* Launch on schedule, not on failure, to ensure overlap
» Calibrations required

* 6round truth validation required
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Anomaly correlation of 500hPa height forecasts

Northern hemisphere Southern hemisphere
From 1980 to 2000 comes Sperations e hemispnere o0 -
mostly from improvement <
to forecasting system

Correlation (%) of actual and
predicted 500hPa height

anomalies W
(12-month running means). P MW |
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[
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ERA-Interim —
W

Improvement since 2000
comes from both forecasting
system and observations
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Courtesy Adrian Simmons




NWP Forecast skill scores continue to improve

Anomaly correlation % of 500hPa height forecasts
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Extratropical NH and SH forecasts: 12 month means
plotted at last month. Updated from Simmons and Hollingsworth 2002

SH skill became comparable to NH after about 2002!
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Operational forecast scores of major NWP centers.
RMSE of geopotential height at 500hPa in NH (m) for
24-hour forecasts are displayed. The score of JMA
forecast has improved rapidly in recent years.



What have we gained and what are the benefits?

Prior to reanalyses, the analyzed climate record was beset
with major discontinuities from changes in the data
assimilation systems. It was difficult, if not impossible, to
reliably infer anomalies and to analyze climate variability.

The use of a stable data assimilation system has produced
fairly reliable records for monitoring, research and
improved prediction that have enabled :

» climatologies to be established

» anomalies to be reliably established

> time series, empirical studies and quantitative diagnostics

> exploration of, improved understanding of processes

» model initialization and validation

> test bed for model improvement on all time scales,
especially seasonal-to-interannual forecasts

>

Greatly improved basic observations and data bases. n
NCAR



What have we learned?

Observing system changes affect variability
Trends and low frequencies unreliable
Exacerbated by model bias
Budgets don't balance
Impacts many diagnostic studies
Problems with hydrological cycle
Sensitivity to model physics (e.g., convection)
Exacerbated by insertion of observations
Problems with warm season continental climates
precipitation
diurnal cycle
Unrealistic surface fluxes
Ocean (radiative, freshwater)
Land (precipitation, radiative)
Limits usefulness for offline forcing: e.g. ocean modeling
Limits ability to do coupled assimilation
Quantities/regions not a priority for weather centers
Surface
Stratosphere
Polar regions
Many aspects of tropics

/|

NCAR k



Bias Corrections are Needed
But how good are they?
Is there a baseline to establish real trends?

Bias corrections should be applied to satellite
And radiosonde data.

Potential for unintended perturbations or bad data
to be perpetuated.

There is evidence from alpine summit observations

that spurious trends may exist.
Most radiosonde stations do NOT have adequate records

of changes
Need to document bias correction changes to all
observing systems.

calY



Bias correction procedure have greatly improved

a Bias estimate from ERA-Interim
0
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-0.2
-0.3
-0.4
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-0.7 7
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b Warm-target calibration temperature
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Top: Global mean bias estimates for MSU channel 2 computed in ERA-
Interim using new bias correction procedures (top) and recorded warm-
target temperatures used for on-board instrument calibration (bottom)
show remarkable agreement Dee et al 2009.



Examples of results
from reanalyses
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Surface Temperature: filled in gaps

a
(b) ERA-40
1979-1988

u
(a) CRUTEM3
1979-1988

(c) CRUTEM3
1999-2008

(d) ERA-INT
1999-2008

Ten year mean anomalies in 2 m temperature (K) relative to the 1989-
1998 mean for (a) CRUTEM3 for 1979-1988, (b) ERA-40 for 1979-
1988, (c) CRUTEM3 for 1999-2008, and (d) ERA Interim for 1999-
2008. Reanalysis values are plotted for all 5 grid squares for which
there are CRUTEM3 data and for all other grid squares with more
than 10% land. Simmons et al 2010.
Missing data for CRUTEM3 => underestimate trends vs full ERA
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Simmons et al 2010



Sur[ace Pres.?ure
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Examples of results from reanalyses
with emphasis on problems
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Precipitation errors in reanalyses
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Precipitable water




Precipitation




Freshwater flux E-P
From moisture budget
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Hydrological Cycle: 2002-08 A

Josphere
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Energy budget: Reanalyses

At TOA, most climate models are funed fo get
balance or replicate ERBE/CERES

Depends on equilibrium simulation

No longer works in reanalyses
= Specified SSTs
Global imbalances (hide even bigger local)

NRA ERA-40 ERA-I JRA MERRA CFSR
Resolution 1.9° 0.8° 05° 1.1° 05° 0.5°

-14 -2 +4 +5 +4 +3 W m=

-2 +6  +6 +15 +3 +4

-14 -8 -2 -9 +] -1

+2 +3  +6 -9 +12 +8

Mostly for 1979-2001 vs climatology




TOA radiation and
surface flux over ocean;
Net 1990s 0.6 W m2
(Pinatubo knock down)

Net 2000s 0.9 W m2 " - . -
In a good model, the 1990 1995 2000 2005
water and energy are e D o

conserved. Y= f
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¢ All reanalyses have too
much incoming solar radiation
in southern oceans
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é Caused by too few clouds

¢ Implies too much heating of
ocean which should diminish
poleward heat transports
when models are coupled

¢ Has implications for storm
tracks and ocean transports
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CCSM4
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Reanalyses

é Even if the assimilating model has a balanced
energy budget, when SSTs are specified
there is an infinite heat and moisture source
or sink

é There is no feedback on the SSTs from
surface fluxes

¢ The result is potentially large energy
imbalances at TOA and at surface

¢ The TOA and surface energy balances can
be strong diagnostics of model bias problems



Reanalysis

1. There is not a problem with lack of
reanalyses, indeed there is a proliferation.
The problems are:

1. Lack of an end to end program with adequate
vetting and evaluation of products (and the
funding for that), and

2. Reanalysis is done in a research domain and not
sustained, so that key personnel can be lost.

3. Lack of adequate vetting and diagnosis

. Reanalysis is an essential part of climate
services, especially in monitoring, attribution
and prediction




Reanalyses

« Ocean E is generadlly too large, and P is too large except
for MERRA

The low value of P-E over land is consistent with the
view that E is too large and P occurs prematurely, so
that the role of advection from afar is too low.

The lifetime of moisture is too short in models.
In CFSR, the main balance is between the analysis
increment and P, and the model can't stand having the
observed amount of moisture, so it rains it out.
The moisture budget provides better estimates and
more stable estimates of E-P than model fluxes or E
and P.
CCSM4
* Transport onto land of water is about right.
* Absorption in atmosphere of energy low=> too much am
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Climate data strengths, limitations, and applications
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