


Main Properties

non-hydrostatic shallow-atmosphere equations
grid staggering:

— horizontal: hexagonal C-grid

— vertical: L-grid

height-based terrain-following coordinates
time stepping

— horizontal: explicit

— vertical: implicit

conservation of mass, tracer-mass, energy,
3D-vector-invariant form of the momentum equations
higher order + positive definite tracer tranport



Hexagonal C-grid

* No pole problem

e C-grid wave propagation properties (no stationary waves
at the truncation limit)

* Geostrophic modes and gravity wave modes are both
represented correctly

* Laplace operator is second order accurate for both,
scalars and momentum

* Horizontal momentum diffusion is expressable as a
divergence of a turbulent stress tensor

» Dissipated kinetic energery from horizontal diffusion can
be fed back to internal energy as a positive source

All the green properties are not achievable with a triangular C-grid.
All the green properties hold stricly only for a regular hexagonal C-grid.



How to describe a vector on C-grid triangles/hexagons?

On a quadrilateral C-grid, we have Ona , we have 3
2 velocity components (u,v) and velocity components (u, or v;)
the i and j unit vectors. | and the i; or j; unit vectors.

i2

i3

The three unit vectors are and therefore must hold.

We call this the
The computational mode will be controlled.



A velocity field on a plane is alternatively defined
by the streamfunction and the velocity potential.

The linear dependency constraint can be proven for gradients (as we shall see).
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Take the example of the hexagonal C-grid.
On the triangular C-grid, velocity potential and streamfunction change place.



How to prove that a discretisation obeys the linear dependency constraint?

) lZl + 03y | of gradient components.
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Observation:

To keep the linear dependency constraint working for
the velocity components, the streamfunction has to be
placed in the center of a hexagon!

We would expect that the streamfunction is on
X the corner of a hexagon = center of a triangle!

The streamfunction always occurs averaged (nullspace is there).

Checkerboard problem:

On can show that the non-fulfillment of the linear dependency constraint visualizes as a
checkerboard pattern in that Stokes integral (circulation) which is defined on triangles.



Triangular C-grid DT+V4

Triangular C-grid DT+V8
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Divergence fields for a linear geostrophic adjustment problem with a badly resolved Rossby radius.
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Consequences for the vorticity in the hexagonal C-grid....
Take the Laplacian...
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Which natural grid conforms with the red velocities?

_hexagonal C-grid

trigAghtar c-grid-
hexagonal D-grid

370
from Dave Randall‘s slides last week




Conservation (conversion) issues

Lorenz (1967): w =Q+D-C

The nature and theory of the
general circulation of the a (K)
atmosphere at

—-D+C+0

ICON-IAP (dry):
[
- [ ()

(F.f) +(F,Q)

Motivation from Lorenz’s words:
»It also follows, since there is no long-
term net heating by radiation and
conduction, and since the remaining
energy-conversion processes other
than friction involve no heating at all,
that the net total heating of the
atmosphere-ocean-Earth system equals
the net frictional heating.”

Conclusions from Lorenz’s words:
In my opinion, any numerical model
which is intended to be used in climate
research has to mimick this physical law
as closely as possible.

It follows, that we have to look on our
so-called smoothing algorithms more
from a physical perspective. How much
do numerical noise, smoothers, fixers,
and dampers affect the physical
credibility of our models?
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Momentum diffusion and dissipative heating
Energetics of a bar

oclinc wave:

without momentum diffusion

....... 1 gress—————

! kinetic energy |

| L | — | .
] a
200 - R
] Py
] 7/
R /'
100 - 4 &
] 0 E
g %
A =,
0 e =)
T T
\\\\\ w\ll
100 - - =
-200 N
I | | 1 |
0 3 6 9 12 15
time [days]

with momentum diffusion

total energy

Further reading: Gassmann (2012,QJRMS)
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Pressure [hPa]

Momentum diffusion and dissipative heating

Held-Suarez test

Temperature relaxation towards an equilibrium temperature.
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Results average last 1000 days of a 1250 days run.
Further reading: Gassmann (2012,QJRMS)
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transport of
potential temperature

proves to be advantageous. .
Further reading: Skamarock & Gassmann (2011, MWR) fine (30km)
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7. Time stepping (The first con? Or is it a pro?)

As our motivation is from the conservation of mass, enerqy... side, we have to

consider the time stepping scheme under the same perspective. This leads to the
conclusion:

All terms in the equations have to be handled with the same time step!
No time splitting is allowed!

Well, we can still use the HE-VI = horizontal explicit, vertical implicit philosophy.

But we cannot compute wave terms more often and advection terms less frequently.
Our time step is restricted by the CFL number for horizontal propagation of sound
waves. This is a con!

However, the consideration of energy conservation lead us to the derivation of

* physically based implicit weights in the VI-part

e physically based extrapolation weights in the HE-part

for the pressure gradient term. From the perspective of scientific insight this is a pro!

A future version of ICON-IAP could focus on possible compromises.




Hollingsworth instability

upward air velocity (a) TRSK, without correction m/s upward air velocity (c) vertex vorticity scheme m/s
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Often the vorticity equation is considered crucial, but here the problem occurs in the divergence equation.

dD Ovh ) ’
7 + D? = 2J,(u,v) + V,w - 3 + Bu — f( = —VIZ:,(I’

V. (vyp-Vvy)=V.(k(xv,+ VK}) Does not hold in the discretisation.

. .. . guasi-geostrophic viewpoint
Which effect is introduced by this error? )
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Lessons learned:

Classical linear wave analysis!
Shallow-water equations do not tell the whole story!

Take physical laws into consideration right from the beginning!



