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@ Continuity equation’s in climate models

@ Desirable properties for transport schemes intended for climate applications
@ Mass-conservation, shape-preservation, multi-tracer efficiency, ...
@ Preservation of pre-existing functional relations (correlations) between species

© A semi-Lagrangian view on finite-volume schemes
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Continuity equations in climate models: dry air

Continuity equation for dry air mass

dp
Liv-(pv)=0
Fri (V) =0,

where V is the velocity field and p density.
@ Mass of dry air &~ N> (ca. 78.08%), O, (ca. 20.95%), Ar (ca. 0.93%), CO, (at present ca.
0.038%); these well-mixed gases make up 99.998% of the volume of dry air

o Trenberth and Smith (2005) estimated that the mass of dry air corresponds to a surface
pressure of 983.05 hPa and it varies less than 0.01 hPa based on changes in atmospheric
composition.

@ = to a very good approximation there are no source/sink terms on the right-hand side of
continuity equation for dry air.
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Continuity equations in climate

Continuity equations for water species

9 (pai) »
o TV (pqiV) = Ppq;,

where g; are dry mixing ratios® [mgd)/m(d)] and P represent source and sink terms.

@ g;: water vapor, cloud liquid and cloud ice.

e 99% of the total weight of the atmosphere is the mass of dry air. The remanding 1% is
approximately the mass of water (large local variations though!)

@ g;: Meso-scale models also have prognostic rain, snow, graupel, ...

o If rain, snow, graupel, etc. are diagnostic it is assumed that they fall to the ground in one physics
time-step!

?the subtleties between using ‘dry’ and ‘wet’ mixing ratios is not discussed here - see, e.g., Lauritzen et al.
(2011b)
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Continuity equations in climate models: water

Spocfc humidty at level 20 (Grd-box averaged cloud liquid water amount at level 23 1064 ke Grid-box averaged cloud ico amount at evel 14 104 kg
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Very ‘oscillatory’ fields:

@ Production/loss terms are large, however, clouds (e.g., ‘ice clouds’ such as Cirrus) can have
lifetimes on the order of days

@ Transport operator must not produce negative values.
@ Overshooting in water vapor, for example, can trigger irreversible physical processes.

In other words: the transport scheme should be shape-preserving with respect to q.
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Continuity equations in climate models: aerosols

@ Microphysics: continuity equations for aerosol number and mass concentrations

o CAMS5 physics: 22 aerosol continuity equations (particulate organic matter, dust, sea salt, secondary
organic aerosols, ...)

Small aerosol # concentration in surface layer (#/1e10)/kg
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Continuity equations in climate models: chemistry

o Chemistry: continuity equations for chemical species

o CAM-chem: approximately 127 continuity equations (ozone, chlorine compounds, bromine, ...) ...
some highly reactive and some long-lived

Grid-box averaged BRO at level 6 (54.6 hPa) 10e-12 kg/kg latitude = 44.5263 lev=6
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Figure: Bromine has a strong diurnal cycle (produced by photolysis)
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Continuity equations in climate els: desirable properties

Important properties of transport schemes intended for atmospheric models:

@ The number of prognostic continuity equations in climate and chemistry-climate models is
increasing fast to accommodate more advanced physical parameterizations (e.g.,
microphysics), online chemistry, ....

= multi-tracer efficiency is becoming increasingly important
(closely tied to compute platform)!

o Atmospheric tracer fields can have very large gradients:

e Shape-preservation is paramount!

o Preservation of gradients is important

@ Inherent conservation of mass is desirable, in particular, to consistently enforce
shape-preservation and tracer-air mass consistency.

@ Optimal preservation of pre-existing functional relationships (correlations)
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Correlations between longlived species in the stratosphere

Relationships between long-lived stratospheric tracers, manifested in similar spatial structures on
scales ranging from a few to several thousand kilometers, are displayed most strikingly if the mixing
ratio of one is plotted against another, when the data collapse onto remarkably compact curves. -
Plumb (2007)

E.g., nitrous oxide (N O) against ‘total odd nitrogen’ (NOy, ) or chlorofluorocarbon (CFC's)
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Figures from Plumb (2007).
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Correlations between longlived species in the stratosphere

Relationships between long-lived stratospheric tracers, manifested in similar spatial structures on
scales ranging from a few to several thousand kilometers, are displayed most strikingly if the mixing
ratio of one is plotted against another, when the data collapse onto remarkably compact curves. -
Plumb (2007)

E.g., nitrous oxide (N O) against ‘total odd nitrogen’ (NOy, ) or chlorofluorocarbon (CFC's)

H

, .
NOY (ppbv)

s

N,00m)

Similarly:
@ The total of chemical species within some chemical family may be preserved following an air
parcel although the individual species have a complicated relation to each other and may be
transformed into each other through chemical reactions (e.g., total chlorine)

@ Aerosol-cloud interactions (Ovtchinnikov and Easter, 2009)

The transport operator should ideally not perturb pre-existing functional relationships
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Analyzing scatter plots

Emm

é{mm

o X X
Analytical pre-existing functional relationship curve 1 (linear)

E=v(x)=a-x+b, xE€ [x("””), x(’"‘”)] ]

where a and b are constants, and x and & are the mixing ratios of the two tracers
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Analyzing scatter plots

aymm

amm

Analytical pre-existing functional relationship curve ¢ (linear)

x and & are transported separately by the transport scheme

ittt = T,  JeH,
aLo= T,  jeH,

where T is the transport operator and H the set of indices defining the ‘halo’ for 7.
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Analyzing scatter plots
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Analytical pre-existing functional relationship curve ¥ (linear)

If T is ‘semi-linear’ then linear pre-existing functional relations are preserved:
7 =T(&) = T(ax] + b) = aT(x]) + bT(1) = aT(x]) + b= ax;™" + b.
k J J J J k

— If transport operator is non-linear the relationship might be violated.
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Analyzing scatter plots

i, OBSERVATIONS

NOY vs N20 1/12/89, 52 to 84 N, 91 = 30 mb

[ ° . Van Leer Method

VAN LEER

Figures from R.Rood’s talk at the 2008 NCAR ASP colloquium

Analytical pre-existing functional relationship curve v (linear)

— carefully designed finite-volume schemes are ‘semi-linear’ even with limiters/filters!
(Thuburn and Mclntyre, 1997; Lin and Rood, 1996)
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Analyzing scatter plots

g

amin

Ix(min ) X Xl(mwc)

Analytical pre-existing functional relationship curve i

E=y(x)=a-x>+b,

where a and b are constants so that ¢ is concave or convex in [X(’"i”),x("'ax)]
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Analyzing scatter plots

g(mwc)

gl

l l
Ix(min) X Xl(mzm
Discrete pre-existing functional relation (initial condition)

G=1v(xk)=a - (xk)’+b k=1,.,K,

where a and b are constants so that ¢ is concave or convex in [X(’"i”),x("'ax)]

Peter Hjort Lauritzen (NCAR) Tracer Advection | August 7, 2012 6 /20



Analyzing scatter plots

(] XJg1+1

A fully Lagrangian model will maintain pre-existing functional relation

+1 +1
Xp =Xk & =&

following parcel trajectories (without ‘contour-surgery’ or other mixing mechanisms)
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Analyzing scatter plots

g( ‘'max)

gw’n

l l
Ix( ‘min) x XI( ‘max)

Any Eulerian/semi-Lagrangian scheme will disrupt pre-existing functional relation

g =T #aT() +b jeH

where T is the transport operator and H the set of indices defining the ‘halo’ for 7.
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‘Real’ mixing, e.g., observed during polar vortex breakup waugn et i, 1007)

gmux)

g ‘min,

I I
'X(mm) X X'(nm)

‘Real mixing’ (when occurring) will tend to replace the functional relation by a scatter by linearly
interpolating along mixing lines between pairs of points
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‘Real’ mixing, e.g., observed during polar vortex breakup waugn et i, 1007)

amm

&( ‘min

I I
IX(mm) X X‘(mux)

‘Real mixing’ (when occurring) will tend to replace the functional relation by a scatter by linearly
interpolating along mixing lines between pairs of points
— Ideally numerical mixing should = ‘real mixing’!

However, it may be shown mathematically that schemes that exclusively introduce ‘real
mixing’ are 15t-order schemes (Thuburn and Mclintyre, 1997).
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Classification of numerical mixing on scatter plots

overshooting
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Figure from (Lauritzen and Thuburn, 2012)

Show animation from idealized test case (Lauritzen and Thuburn, 2012; Lauritzen et al., 2012)
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Derivation form

‘Most fundamental equations in fluid dynamics can derived from first principles in either a Eulerian
form or an Lagrangian form’ - (see, e.g., text book of Durran, 1999) J

Lagrange
//—>

Euler

Figure courtesy of J. Thuburn.
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Derivation form

Consider the continuity equation for some inert (no sources/sinks) and passive (does not feed
back on the flow) tracer

semi-Lagrangian form Eulerian (flux) form

\-»

For simplicity assume a quadrilateral mesh and leave out the ‘details’ of spherical geometry.

@ Only consider two-time-level finite-volume schemes
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Finite-volume approach: Integrate in space

semi-Lagrangian form Eulerian (flux-form) form

@ | (b)

A e

Al [ AFF
jmam

© | @

- AT
%

D
— ¥ dA = 0.
Dt Jaw Integrate
i iant o
where A(t) is a Lagrangian™ control (e 4V (7)) =0
volume and ot
D o) N over an Eulerian control volume Aj:
— = 4+V-V,
Dt ot
is the material /total derivative. ot w G / Tolp) et =

fvo\ume whose bounding surface moves with the local fluid velocity <> volume which always contains the same material particles
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Finite-volume approach: Integrate in space

semi-Lagrangian form Eulerian (flux-form) form

@ | )

Ar

. i s
: PO )

© | @

e ™
PO TR

\ 7

AR

D

= ¥ dA = 0.

Dt J ) Apply divergence theorem on second term:
where A(t) is a Lagrangian® control ) L
volume and ot Y dA+ jé. (¢v)-idS =0,

tJa, J oA
D o .
Dt = A +v-V, where 0Ay is the boundary of A; and i
the outward normal vector to 0Ag.

is the material /total derivative. — instantaneous flux of tracer mass

through boundaries of Ay

T

volume whose bounding surface moves with the local fluid velocity <> volume which always contains the same material particles
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Finite-volume approach: Integrate in time

semi-Lagrangian form Eulerian (flux-form) form

@ | )

A 5

A |
%

A

s

© | @

] |4
T TR

A

\<

/ dA= [ pdA,
A(t+At) A(t) Apply divergence theorem on second term:

where At is time-step and t = n At. Pt
—/ o dA + (¥ V)-7idS =0,
ot Ja, dA,

Upstream semi-Lagrangian approach:

—n+1 —n where OAj is the boundary of Ay and i
DA =FRA k y ot ok
Yk k= ViAak, the outward normal vector to OA.

where () is average value over cell. — mstantaneous. flux of tracer mass
through boundaries of Ay
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Finite-volume approach: Integrate in time

semi-Lagrangian form Eulerian (flux-form) form

@ | )

A ~ JZam

© | @

At
B he=

P dA = ) dA, 9 dA % 7). FdS —
/A(t+At) At) ot Akw +-6Ak (¥7v)-idS =0,

where At is time-step and t = n At.

—n+1 —n
Upstream semi-Lagrangian approach: P TAA =Y AA+

—n+1 —n e
Yy AAg = P Aay, /A é»\ (V) -AdS | dt=0,
nAt k

where () is average value over cell. .
( g — flux of tracer mass through boundaries

of Ay during t € [nAt, (n+ 1)At]
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Finite-volume approach:

semi-Lagrangian form

/ W dA = ) dA,
A(t+At) A(t)

where At is time-step and t = n At.

Upstream semi-Lagrangian approach:

—n+1

Uy DA = PpAay,

where () is average value over cell.

Eulerian (flux-form) form

@ | )

Ay e

Il s
au

© | @

Ac
a3

1=

\T
{

VRN
\

4
1 — T
G DA AN SR,
=1

where
F("’ — T)/ ¢n X y

is flux of mass through face 7 during At,
and s,(:) = =kl

for simplicity assume s7 is NOT multi-valued; for multi-valued case see, e.g., Harris et al. (2010).
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

@ | )

agl [ AFT
%

© | @

A s
PO [ HeR

—n-+1 —n
i AAL = PrAay,

4
—n+1 = T
T AA= P AA - R,

=1

v
Note equivalence between Lagrangian cell-integrated and Eulerian flux-form continuity equations:
4
M-S (sf) Aa([)) = Aay.
T=1
i.e. the areas involved in Eulerian forecast equals upstream Lagrangian area aj. )
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

@ | )

—n+1 —n
Y AAx = P Aag,
) © | @
Define a global piecewise continuous z z
reconstruction function

Y
{
YA vy

N
w(xvy) = Z lAkwk(Xzy)’
k=1

4
—n+1 _ =i (7)
AA =, DA — F,
where 4, is the indicator function wk k=Y , TZ:1 ko
17 (X7y) € Ak7
Ia, =
07 (X7y) ¢ Ak'
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

(b)

Ay 7 Ay

o)

—n+1 —n
Y TAA = P Aay,

© | @

Ax
ap=>

Ly
G aac=Y" [ uicy)da JZum
0=1" ke

where ayy is the non-empty overlap area

S
4

7/
A S
T

AVANEIRA VAN

G
Axt

4
—n+1 —n T
Di DA = AA- D FT,
T=1

ake =akNAg, ae#0; £=1,..., L,

where N is the number of cells in the
domain and L, number of overlap areas.
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Finite-volume approach:

semi-Lagrangian form Eulerian (flux-form) form

() @ ! ()

v Py [ e s if{

© | @

T
7n+1AA ) 7nA (? A (—ﬁ A
wk k = wk ak, Z}/@ % 2 At

Ly
—n+l 4
v AAg = / Pi(x,y) dA. —nt1 _ (r)
K 2 [, Vi) A
—
where aiy is the non-empty overlap area -
"
ake =akNAg, ae #0; L=1,... L, F{) = Z/ PI(x,y) dA,
£=1" ke

where N is the number of cells in the

. o e
domain and Ly number of overlap areas. where L7 is number of non-empty ‘flux

overlap areas for face 7.

Note that in general: L, < 21:1 L(kT)
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Finite-volume approach: Conditions for inherent mass-conservation

semi-Lagrangian form Eulerian (flux-form) form

(b) | @ i (b)
A 4, - A e 5

(©) | (@)

Ac
2t

DiAA = PpAay, JZu

7/ n
g

\_
{
YA vy

@ ay's span Q without gaps/overlaps 4
il _
Ti AA= P AA - FT,
N =1
Jak=9, and ax Nag =0V k # L.
k=1 @ Fluxes for ‘shared’ faces must cancel,
e.g.,
@ Sub-grid-scale representation of v & (3) (1)
: F,”7 = —F,
must integrate to cell-average mass k k=1
/ Pi(x,y) dA = @ZAA’ Any flux, even highly inaccurate fluxes,
Ax will NOT violate mass-conservation!
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Finite-volume approach: Enforcing shape-preservation

semi-Lagrangian form Eulerian (flux-form) form

o) @ | ®)

Ay 0 7 Ag ( o
ot i
© | @

(*7(/ A
—n+1

D DAL = PrAay, %@

=1~
A

7/{

AvA VIR VAN

4
The only direct way of enforcing EZH AA, = EZ AA, — Z F;ET)7
shape-preservation is to filter the T=1
sub-grid-scale distribution ¥](x, y): Shape-preservation can be enforced by
o fully 2D filters (Barth and Jespersen, 1989) @ blending monotone and high-order
@ 1D filters for cascade schemes fluxes (e.g., Flux-Corrected Transport Zalesak, 1979)
(Colella and Woodward, 1984; Zerroukat et al., 2005; Lin o making ¥}(x, y) shape-preserving
and Rood, 1996) (Barth and Jespersen, 1989)
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Finite-volume approach: Area approximation

(a) (b) @ | () s
T | | T
PR e\
arl | |1
= PR

o

(a) Exact

(b) Straight lines (Ranzic, 1992; Lauritzen et al., 2010)

(c) Step-functions for ‘North/South’
faces & straight lines parallel to
‘longitudes’ for ‘East/West' faces
(Nair and Machenhauer, 2002).

(d) Cascade (flow-split)

(Nair et al., 2002; Zerroukat et al., 2002)

N
=

(g-k) Quadrilateral flux-areas (Dukowicz and
Baumgardner, 2000; Harris et al., 2010)

(I) *Effective’ departure area
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Finite-volume approach: Area approximation

(a) (b)

® | () L

=
ag

I
%
i
=

O] (k)

A
P
3

U T
(a = =
(a) Exact & .
(b) Straight lines (Ranzic, 1992; Lauritzen et al., 2010) Lo
(c) Step-functions for ‘North/South’

faces & straight lines parallel to
‘longitudes’ for ‘East/West' faces
(Nair and Machenhauer, 2002).

(d) Cascade (flow-split)

(Nair et al., 2002; Zerroukat et al., 2002)

(g-k) ‘Curved’ (parabolic) flux-areas
(Ullrich et al., 2012)

(1) ‘Effective’ departure area
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Finite-volume approach: Area approximation

(a) (b)

@ | ®) =

@ (e)

Y\
5
\
AN YT
\J
\

® -
i =d g
(a) Exact { 2y ’% —
(b) Straight lines (Ranti¢, 1992; Lauritzen et al., 2010) =]
(c) Step-functions for ‘North/South’

faces & straight lines parallel to

‘longitudes’ for ‘East/West' faces
(Nair and Machenhauer, 2002). (g-k) Parallelogram flux-areas (Miura, 2007;

(d) Cascade (ﬂOW-Split) Skamarock and Menchaca, 2010)
(Nair et al., 2002; Zerroukat et al., 2002) (1) ‘Effective’ departure area
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Finite-volume approach: Area approximation

(@) (b)
(a) P D M A (b) P DM’ A
L ", £ L H1 £
o clN B 4 B
IS G
7 F o |
© | () |
[

(a) Exact

g ] Figure from Machenhauer et al. (2000
(b) Straight lines (Ranti¢, 1992; Lauritzen et al., 2010) igure from Machenhauer et al. (2009)

(c) Step-functions for ‘North/South’
faces & straight lines parallel to
‘longitudes’ for ‘East/West' faces
(Nair and Machenhauer, 2002).

(d) Cascade (flow-split)

(Nair et al., 2002; Zerroukat et al., 2002)

(a-c) Dimensionally split scheme
(Lin and Rood, 1996):
Flux-areas area combinations of
rectangles aligned with grid lines

(d) ‘Effective’ departure area
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etric and reconstruction errors

VAT == T A AT
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) A <SRN
= SN

7 7 77
7777

<
AT 77
7 B .
oL L T H=L 77/
~ZL 7/ /

‘ x-axis

Geometric error Reconstruction error

o ‘geometric error’: how well is the upstream Lagrangian area / flux areas approximated
@ ‘reconstruction error’: how well is the sub-grid-scale distribution approximated
(methods for reconstructions was discussed in P.A. Ullrich’s lecture 1)
Typically:
o for lower-order reconstruction functions the ‘reconstruction error’ > ‘geometric error’
o the smaller the Courant number (At) the smaller the ‘geometric error’

o for higher-order reconstruction functions and shear flows (deformational) the ‘geometric
error’ can be significant (Ullrich et al., 2012)
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Further simplifications for flux-form approaches (wargolin and shashkov, 2003)

Recall: we can do anything we want with the fluxes as long as F,E3) = —F,El_)l J

‘Rigorous’ flux for face 1 (7 = 1):

3
Fk“):Z/ PI(x,y) dA.
¢=1"3ke

For At sufficiently small:

Aak2 > Aakl and Aak2 > Aak3

L

— simplify flux-integration by only using one

a(l
= upstream reconstruction function:
1 1
FO ~ 70 :/ Y2(x,y) dA.
ak1YakaUags

17 is extrapolated over a;; and a;3.

@ note: the search for overlap areas has almost been eliminated in J—',El)

1 .
° .7-',5 ) stable for Courant numbers approximately less than % (Bagy > Dagq + Aayg) (Lauritzen et al., 2011a)

° .7-',51) can be slightly more accurate than F,El) (Lauritzen et al., 2011a)

Peter Hjort Lauritzen (NCAR) Tracer Advection | August 7, 2012 14 / 20



Time-stepping and coupling: stability

The n-coordinate atmospheric primitive equations, neglecting dissipation and forcing terms:

ov 1, OV RT,
il f gy (0] — = 1
5 T ) kx +V(2v + )+na +—Vp=0 (1)
a—+v VT +7n OT _RTv,, o (2)
ot Ton 5P
a9 (Op aop _ ) 0 ( Bp)
V- — (== ) =0 3
ot (3n> - (an o \"an )
9 (9p op ﬂ) 7] (.8p)
= (p==gq) =o0. 4
(877 )+V (Bn +877 nanq “)

o Continuity equation for air is coupled with momentum and thermodynamic equations:

@ thermodynamic variables and other prognostic variables feed back on the velocity field
@ which, in turn, feeds back on the solution to the continuity equation.
@ Hence the continuity equation for air can not be solved in isolation and one must obey the maximum allowable time-step restrictions imposed

by the fastest waves in the system.
@ The passive tracer transport equation can be solved in isolation given prescribed winds and

air densities, and is therefore not susceptible to the time-step restrictions imposed by the
fastest waves in the system.
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Time-stepping and coupling: consistency

Continuity equation for air density p

op L
— + V. =0, 1
L+ (p7) &)
and a tracer with mixing ratio g
d(pq =
%wwpqv):o, (2)

@ In continuous space:
g = 1 = continuity equation for (p q) reduces to continuity equation for air (p)
o It is considered desirable that discretization schemes obey this relation:

‘free-stream’ preserving or ‘consistent’ tracer transport.

@ Note: ‘complete consistency' is obtained if air density and tracer mass continuity equations
are solved using the same numerical method, on the same discretization grid, and using the
same time-steps (everything is ‘in sync’!).
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Time-stepping and coupling:

semi-Lagrangian form Eulerian (flux-form) form
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Time-stepping and coupling: mass-conservative semi-implicit approach

Traditionally: semi-Lagrangian advection of p is combined with semi-implicit time-stepping:

At - %
pz+1 ( +1)e)<p = poo (V n+1 N vN V£+1) ,

2
where

@ poo a constant reference density
@ ()exp is the explicit prediction

o vt velocity extrapolated to time-level (n+1)

What about tracers?
@ Solving continuity equation for (p q) explicitly

pay T AAL = parAay

is NOT ‘free-stream’ preserving!

o Using ‘traditional’ semi-implicit approach for tracers

At = =,
pay DA =D apAay — — (P @)oo (V R/ Vk"“) :

is problematic (Lauritzen et al., 2008).
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Time-stepping and coupling: mass-conservative semi-implicit approach

Traditionally: semi-Lagrangian advection of p is combined with semi-implicit time-stepping:

P = 0 ep = 5 AV (O e %] = V- [@e %]}
where

@ poo a constant reference density
@ (-)exp is the explicit prediction

o ¥t velocity extrapolated to time-level (n+ 1)

What about tracers?

@ A solution is to formulate the semi-implicit terms in flux-form

P = P8y~ Y [0 e ]~V [P 7}

so that reference states are eliminated (wong et al., 2012)
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Time-stepping and coupling: Eulerian flux-form

flow direction

time

For efficiency, sub-cycle dynamics with respect to tracers:

Solve continuity equation for air p together with momentum and thermodynamics equations.
Repeat ksplit times

Brown area = average flow of mass through cell face.

Compute time-averaged value of g across brown area using flux-form scheme: %

Flux of tracer mass: < q > x YK/t prti/ksplit

Yields ‘free stream’ preserving solution!
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Time-stepping and coupling: Eulerian flux-form

flow direction

n+1/4
p

time

Ut

For efficiency, sub-cycle dynamics with respect to tracers:
@ Solve continuity equation for air p together with momentum and thermodynamics equations.
o Repeat ksplit times
@ Brown area = average flow of mass through cell face.
o Compute time-averaged value of g across brown area using flux-form scheme: %
o Flux of tracer mass: < q > x Y\ prti/ ksplit

@ Yields ‘free stream’ preserving solution!
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Time-stepping and coupling: Eulerian flux-form

flow direction

n+2/4
P niua
p

time

FUT AUt -

For efficiency, sub-cycle dynamics with respect to tracers:
@ Solve continuity equation for air p together with momentum and thermodynamics equations.
o Repeat ksplit times
@ Brown area = average flow of mass through cell face.
o Compute time-averaged value of g across brown area using flux-form scheme: %
o Flux of tracer mass: < q > x Y\ prti/ ksplit

@ Yields ‘free stream’ preserving solution!
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Time-stepping and coupling: Eulerian flux-form

flow direction

time

ATMCINS TR RNy N8

For efficiency, sub-cycle dynamics with respect to tracers:

@ Solve continuity equation for air p together with momentum and thermodynamics equations.
o Repeat ksplit times

@ Brown area = average flow of mass through cell face.
o Compute time-averaged value of g across brown area using flux-form scheme: < g >.
o Flux of tracer mass: < q > x Y\ prti/ ksplit

@ Yields ‘free stream’ preserving solution!
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Time-stepping and coupling: Eulerian flux-form

flow direction

time ¥

§.un+3/4A ‘ "*2’4At~§-u"*”4mo§-u"m{

For efficiency, sub-cycle dynamics with respect to tracers:

@ Solve continuity equation for air p together with momentum and thermodynamics equations.

o Repeat ksplit times

@ Brown area = average flow of mass through cell face.

o Compute time-averaged value of g across brown area using flux-form scheme: %
o Flux of tracer mass: < q > x Y\ prti/ ksplit

@ Yields ‘free stream’ preserving solution!
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Time-stepping and coupling: Eulerian flux-form

flow direction

time §

§.un+3/4A ‘ ”*2’4At~§-u"+U4Ato§-u"At{

For efficiency, sub-cycle dynamics with respect to tracers:

@ Solve continuity equation for air p together with momentum and thermodynamics equations.

o Repeat ksplit times

@ Brown area = average flow of mass through cell face.

o Compute time-averaged value of g across brown area using flux-form scheme: %
o Flux of tracer mass: < q > x Y\ prti/ ksplit

@ Yields ‘free stream’ preserving solution!
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