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Massively Parallel Computers 
•  Architectured in a hierarchy 
•  Collection of cabinets 
•  Each cabinet contains “blades” 

•  A blade has network interconnect and “nodes” 
– Each node has its own processors and memory (DRAM) 

•  Nodes share data over fast, specialized networks 
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The Primary Difficulty Of Computing 
•  Peak Performance: Fictitious “perfect” world 
–  [Cycles per second per core] * [FP Instructions per cycle] * 

[cores per processor] * [processors per node] * [# nodes] 
– Often has little bearing on science 

•  Why? 
– Nothing * Nothing = Nothing       (Don’t get too excited) 

– We must feed the processors with useful data 
– Data movement significantly slower than processing data 



Nodes Communicating Over A Network 
Problem: You almost always need data from other nodes 

This is the slowest 
component of the 
machine, especially 
when data must 
transfer across most 
of the machine 
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Communication Between Elements 

Data must be swapped between the two processes 
 

Something like this happens for every atmospheric scheme 

Process	  1	  Process	  0	   •  Boundary points occupy the 
same location 

•  Spectral Element requires them 
to be equal (averaging) 

•  Discontinuous Galerkin require 
a flux between them 
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Processor	  

Register	  1	  

Register	  2	  

Register	  3	  

Register	  4	  

Register	  5	  

Register	  6	  A processor can only 
operate on data that is 

in registers Registers are very 
small, very fast, and 
very expensive Example 

Register 3 = Register 1 + Register 2 
Register 6 = Register 4 * Register 5 

Problem: 
It takes time to get data into registers 



Floa-ng	  Point	  
Processor	  

Register	  1	  

Register	  2	  

Register	  3	  

Register	  4	  

Register	  5	  

Register	  6	  

DRAM is relatively slow memory traveling over slow wires 

DRAM	  

Registers Are Fed Data from DRAM 
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Two Concepts For Data Transfer 

Data is transferred over wires. Think of them as pipelines 
Two main properties:  Latency  &  Bandwidth 

Bandwidth:	  The	  amount	  of	  data	  you	  
can	  pass	  through	  per	  second	  



Problem: DRAM latency is very high, bandwidth ≈100x too slow 
Solution: Smaller size, lower latency, higher bandwidth “cache” 

Floa-ng	  Point	  
Processor	  

Register	  1	  

Register	  2	  

Register	  3	  

Register	  4	  

Register	  5	  

Register	  6	  

DRAM	  

Cache	  

Caching Is Faster For Reused Data 



The Power Cost Of CPUs 
•  Most of the CPU doesn’t directly compute 
•  Multiple Cache Levels, Cache Policies, Branch 

Prediction, Prefetching, Out of Order Execution Engine 
–  These all consume power 
– High GHz clock rates leak significant power and heat 
– Cooling costs are a significant portion of the power budget 

•  Multi-core generally improves power efficiency 
– More difficult to code, hyper-threading very hard to access 
–  Paired cores contend for the same resources 
– Cache coherence & “snoopers” consume energy 
– Work needs to be separated and fairly independent 
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•  GPU	  has	  its	  own	  very	  fast	  DRAM	  
•  15	  Larger	  “SMX”	  Mul-processors	  
•  SMX: 	  Streaming	  Mul-processor	  

	   	   	  (neXt	  genera-on)	  



Diagram Of The Latest GPU: Kepler 

Image	  Source:	  h.p://www.nvidia.com/content/PDF/kepler/
NVIDIA-‐Kepler-‐GK110-‐Architecture-‐Whitepaper.pdf	  

GDDR5	  
DRAM	  

•  Born	  from	  gaming:	  mapping	  textures	  
•  Perform	  the	  same	  opera-on	  on	  many	  

different	  data	  
•  Luckily,	  most	  dycores	  do	  this	  already	  



Diagram Of The Latest GPU: Kepler 

Image	  Source:	  h.p://www.nvidia.com/content/PDF/kepler/
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Diagram Of An SMX Multiprocessor 

Image	  Source:	  h.p://www.nvidia.com/content/PDF/kepler/
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Diagram Of An SMX Multiprocessor 

Image	  Source:	  h.p://www.nvidia.com/content/PDF/kepler/
NVIDIA-‐Kepler-‐GK110-‐Architecture-‐Whitepaper.pdf	  

•  192 single-precision cores 
•  64 double-precision cores 
•  Only 64KB general cache 

–  Less than 1 MB per GPU! 
•  64K registers 

–  Can hold 32K doubles 
•  Threads launched over cores 

–  May have >1 thread per core 
–  Threads synchronize and 

share registers & cache only 
within SMXs not between them 



GPUs: Massively Multicore Chips 
•  Example: Tesla series GK110 architecture “Kepler” 
–  “Peak” flops in single-prec (SP) per GPU:  5,184 Gigaflops 
–  “Peak” flops in double-prec (DP) per GPU: 1,728 Gigaflops 
–  Peak memory bandwidth: 36 Billion doubles / sec 

•  How illusive is peak performance on these GPUs? 
–  [ Peak SP ops per sec ] / [ Peak SP data per sec ] :  72 
–  [ Peak DP ops per sec ] / [ Peak DP data per sec ] :  48 
–  This many computations per memory access is hard to do 
–  Using the local cache significantly improves this 
–  This also doesn’t take into account latency 

•  But latency effects are greatly reduced by thread switching 



The Dreaded PCI-e Bus 

•  The PCI-express bus connects main DRAM & GPU DRAM 
•  Painfully low bandwidth 
–  1,296 & 864 times slower than peak flops in SP & DP 

•  Also very high latency for small transfers 

CPU	  

Main	  
DRAM	  

GPU	  
DRAM	  

 
PCI-express Bus 

 

Not exactly the 
express lane 
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The Optimization Hierarchy 
•  Most importantly, minimize and / or overlap PCI-e transfers 
–  Usually, you overlap w/ MPI or with independent CPU or GPU code 

•  Provide enough threads to occupy most of the GPU 
–  Straightforwardly, you don’t want parts of the GPU idle, but also… 
–  DRAM latency hidden by switching threads when waiting for memory 
–  Only works when enough threads are provided 

•  Next, make sure DRAM accesses from threads are sequential 
–  This usually gets worse if DRAM accesses are strided 
–  This gets much, much worse if DRAM accesses are irregular 

•  Next, cache reused data in “shared” memory when possible 
–  Worst case: shared memory is 8x slower than registers 

•  Other optimizations we don’t have time to cover 
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•  “Flops are free” 

–  Because peak flops >> peak bandwidth 
–  However, it is very rare in dycores to add flops without adding data 
–  Flops require data, data’s not free, so flops aren’t really free 

•  GPUs perform 200x faster than CPUs 
–  Did you compare 4 highly optimized single-precision GPUs against a 

single unoptimized double precision CPU core? Did you ignore PCI-e and 
MPI communication times? 

–  Apples to apples, you’ll rarely see more than 5-10x at the high end 
–  Still, even 3-4x is a great result 

•  Flops per Watt is orders of magnitude better with GPUs 
–  Maybe by peak performance, but that’s irrelevant 
–  Maybe by the Top500 benchmark, but that’s often irrelevant 
–  What is the science per Watt? Modest improvements are still a big win 
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Coding For GPUs: Introduction 
•  GPUs ideally perform the same operation on many data 
–  Think of a “thread” as a sequence of operations 

•  GPU “kernel” gives the operations done by 1 arbitrary thread 
–  These operations are done identically by millions of threads 
–  Each thread chooses different data based on a unique ID 

•  Instead of loops, you launch kernels with millions of threads 
–  Each thread will have a unique index in 5 dimensions 

•  Tx, Ty, & Tz (thread indices within a block)       and       Bx & By (block indices) 
–  The “Tx” index varies the fastest  (innermost loop) 
–  The “By” index varies the slowest  (outermost loop) 

•  Threads execute in groups of 32 called “warps” 
–  All threads in a warp execute the same instruction before moving 

onto the next instruction 
–  A strong contrast to CPU threads, which execute independently 



Prototypical Loop Transformation 
CPU Code 

 
do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
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do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
    do i=1,np 
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ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
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Different	  Thread	  Indices	  Are	  
Computed	  On	  Different	  Cores	  



Prototypical Loop Transformation 
CPU Code 

 
do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
    do i=1,np 
     Qdp(i,j,k,q,ie) = Qdp(i,j,k,q,ie) / dp(i,j,k,ie) 

GPU Code 
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
Qdp(i,j,k,q,ie) = Qdp(i,j,k,q,ie) / dp(i,j,k,ie) 

Keep fastest varying indices the same 



Think Differently About Threading 
CPU Code 
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cache locality 

However, these will 
not be sequential 

accesses on GPUs 



Think Differently About Threading 
CPU Code 
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 do q=1,qsize 
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   do j=1,np 
    do i=1,np 
     coefs(1,i,j,k,q,ie) = ... 
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ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
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i  = threadidx%x 
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coefs(2,i,j,k,q,ie) = ... 
coefs(3,i,j,k,q,ie) = ... 

•  Memory	  accessed	  in	  the	  
order	  of	  instruc-ons	  
•  coefs(1,1,1,1,…)!
•  coefs(2,1,1,1,…)!
•  coefs(3,1,1,1,…)!
•  coefs(1,2,1,1,…)!
•  coefs(2,2,1,1,…)!
•  …!

•  Memory	  accessed	  in	  the	  
order	  of	  threads	  
•  coefs(1,1,1,1,…)!
•  coefs(1,2,1,1,…)!
•          |!
•  coefs(1,N,1,1,…)!
•  coefs(1,1,2,1,…)!
•  coefs(1,2,2,1,…)!
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ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(i,j,k,q,ie,1) = ... 
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Gained a 2x speed-up on GPUs from 
this alone 
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•  CUDA and CUDA FORTRAN 

–  Similar to the above examples, lower level, hand-optimized 
–  Likely the best option for “hot spots” in your code 

•  OpenCL (a little more cumbersome than CUDA) 
–  Works on ATI & Nvidia GPUs, multi-core processors, and Intel MIC 
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–  Similar to the above examples, lower level, hand-optimized 
–  Likely the best option for “hot spots” in your code 

•  OpenCL (a little more cumbersome than CUDA) 
–  Works on ATI & Nvidia GPUs, multi-core processors, and Intel MIC 

•  Libraries (BLAS, LAPACK, FFT, etc) 
–  Atmospheric dycores don’t often use much linear algebra or Newton-Krylov 
–  But if yours does, then this is your best bet 
–  Some physics packages will be able to make use of these 

•  Directives (A good option going forward) 
–  Like OpenMP in nature, more sustainable software development practices 
–  They are currently in their infancy, and the API is evolving 
–  They are not automatic, you will have to change your code 

•  Luckily these changes usually improve CPU performance as well 



CAM-SE: Fermi GPU vs 1 Interlagos / Node 
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2.6x	  faster	  
3.6x	  faster	  

2.9x	  faster	  

5.4x	  faster	  

4.2x	  faster	  

•  Benchmarks performed on XK6 using end-to-end wall timers 
•  Port used CUDA FORTRAN for tracer transport only 
•  CAM-SE with MOZART Chemistry (106 tracers) at 14km 



Why Was Hyperviscosity So Fast? 
•  Euler Step is called before everything else in tracer transport 
•  During Euler Step’s GPU computations, we perform all 

initialization efforts for the subsequent kernels 
–  Thus Vertical Remap and Hyperviscosity are much faster 
–  Euler Step and Hyperviscosity are extremely similar 
–  So the speed-up difference gives the advantage of overlapping 

computation where possible 



Why Was Vertical Remap So Fast? 
•  Originally used splines for reconstruction 

–  Splines require a linear solve à vertical dependence within loops 
–  Vertical index could not be threaded, only horizontal 

•  We replaced reconstruction with Piecewise Parabolic Method 
–  Vertically independent à vertical index was threaded à 30x more threads 
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Why Was Vertical Remap So Fast? 
•  Originally used splines for reconstruction 

–  Splines require a linear solve à vertical dependence within loops 
–  Vertical index could not be threaded, only horizontal 

•  We replaced reconstruction with Piecewise Parabolic Method 
–  Vertically independent à vertical index was threaded à 30x more threads 

•  Original remapping used a summation to reduce flops 
–  Summations are vertically dependent and harder to thread 

•  We changed it to do two integrations instead 
–  This double the work for remapping 
–  But it also reduced data requirements and dependence 

•  As a result, all data in the reconstruction and remap fit into cache 
–  Only accesses to DRAM were at the very beginning and end of kernel with 

a lot of work in between 
–  Thus, >5x speed-up over PPM remap on CPU 

•  If Increasing The Workload 
•  Allows More Threading 
•  Decreases Data Dependence 
•  Decreases Local Data Requirements 

•  Then It’s Worth Investigating 



Outline 
•  Brief Overview of Supercomputer Architecture 
•  CPUs and Data Movement 
•  Introduction to GPUs and the Challenges 
•  Coding For GPUs 
•  Implications for Atmospheric Dycores 
•  Discussion & Questions 
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How To Get Peak Flops 
•  How to make your code reach peak performance on GPUs 
–  Step 1: Formulate your problem as time-implicit 
–  Step 2: Maximize the problem size per node and decompose 
–  Step 3: Pretend the system is dense 
–  Step 4: Do an L-U decomposition with partial pivoting: O(N3) 
–  Step 5: Watch climate evolve faster than your simulation 

•  The Point: Flops do not equate to efficiency 
–  Time step matters, cost per time step matters 
–  Throughput and scaling matter 
–  Most of all, accuracy matters 

•  Resolution, damping, oscillations, consistency, tracer correlations, 
conservation, maintaining balances, isotropy, coupling, etc 
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GPU-Friendly Algorithmic Properties 
•  Problem size should be in multiples of the GPU resources 

–  E.g., CAM-SE:   4x4 bases, 32 levels, 64 elements / node, 128 tracers, etc 
•  Avoid irregularly divergent if-then logic & gotos 

–  All threads in a warp execute exactly the same instruction 
•  If threads in a warp take two branches, both branches get executed 

•  Plenty of data-independent, fine-scale parallelism 
–  Typically found in nested loops, usually there if you look for it 
–  All time-explicit stencil calculations (FV, Galerkin, etc) have this 
–  However, you should avoid dependency within those loops (i.e., an iteration 

depends on data computed in the previous iteration) 
–  Inversions, reductions, & summations exhibit dependency: spline coefficients, 

time-implicit schemes, hydrostatic summations, energy fixers, positivity filters 
•  Usually cannot thread vertical index, often giving too few threads per GPU 

•  More data per node is always a good thing 



We Need More Data Per Node 
•  Time-explicit time steps reduce linearly with grid (h-)refinement 

–  2x horizontal grid refinement requires 8x more work (2x smaller time step) 
–  Yet it only introduces 4x more data 
–  Keeping same throughput, 4x more divided over > 8x more processors 
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–  Another option is to increase the number of ensemble members 
•  More spatial resolution and more physics means more uncertainty 
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•  Time-explicit time steps reduce linearly with grid (h-)refinement 

–  2x horizontal grid refinement requires 8x more work (2x smaller time step) 
–  Yet it only introduces 4x more data 
–  Keeping same throughput, 4x more divided over > 8x more processors 

•  We need alternative means of increasing the data per node 
–  One option is to transport more tracers with more advanced physics 

•  Our team at OLCF did this for CAM-SE, using active chemistry 
•  CAM4: 3 tracers   ;   CAM5: 26 tracers   ;   full chemistry: 108 tracers 

–  Another option is to increase the number of ensemble members 
•  More spatial resolution and more physics means more uncertainty 
•  I think this is a very useful option! 

•  There’s another means of increasing data per node: algorithms 
–  Faster runtime or less comm à fewer nodes à more data per node 
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–  No data exchanges for reconstruction (entirely local) 
–  Minimal data exchanges for boundary averaging 
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–  Minimal data exchanges for boundary averaging 
–  Very cheap per time step 

•  Pitfalls of CAM-SE 
–  R-K method should be same order as spatial 
–  Time step is very small due to variational form of PDEs 
–  Hyperdiffusion (subcycled) incurs significant excess communication 
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We Need New Spatial Methods 
•  New Spatial Operators 

–  Spectral Finite-Volume (Cheruvu et al, ANM, 2007) 
•  Time step decreases less rapidly than Galerkin during p-refinement 

–  Creative combinations of different moments (Ii & Xiao, JCP, 2007) 
•  Constrained Interpolation Profile (CIP) that evolves point values, 

derivatives, and cell means – all in the same method 
–  Multi-Moment Finite-Volume (Prather,JGR, 1986; Norman & Finkel, JCP, 2012) 

•  Time step constant (CFL= ½ in 2-D) during high-order p-refinement 
•  “New” Limiting Procedures 

–  Weighted Essentially Non-Oscillatory (WENO) & Hermite WENO 
(Liu et al, JCP, 1994 ; Qiu & Shu, JCP, 2004) 
•  Robust even for shocks, done once per time step, HWENO low-comm 

–  Flux-Corrected Transport (Boris & Book, JCP, 1973 ; Zalezak, JCP, 1979) 
•  Easily adapted to non-structured grids & cubed sphere 



We Need New Temporal Methods 
•  New Time Integration Methods 

–  Semi-Lagrangian (SL) Finite-Volume & SL Galerkin for transport 
•  Much larger time step, transport only (Lauritzen et al, JCP, 2010  ; 

Bonaventura et al, Comm SIAM Congr, 2006) 
–  Characteristic Flux-Form Semi-Lagrangian (Ii and Xiao, JCP, 2007   ;   

Norman et al, JCP, 2011) 
•  One-stage, one-step, very large time step 

–  Arbitrary-order DErivative Riemann (ADER) & ADER-Continuous Galerkin 
•  One-stage, One-step, low-memory, fully non-linear, very high-order 
•  And now very cheap (Norman & Finkel, JCP, 2012) 
•  Easily adapted for mesh refinement local time stepping 

 

Your Contributions Here 
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Communication-Reducing Algorithms 
•  Different algorithms require different communication amounts 
•  Time-implicit & elliptic splittings 
–  Require significant global communications and reductions 
–  Can only scale to 10,000 nodes with maximal problem size per node 
–  These problem sizes rarely give feasible atmospheric throughputs 

•  (Horizontally) Time-explicit methods 
–  On cubed-sphere and icosahedral grids, they scale quite well 
–  Significant flexibility within time-explicit methods for time step size 
–  Galerkin methods require minimal data exchange per time step 

•  Yet the time step is extremely small 
–  Multi-moment finite-volume & spectral volume are promising 
–  Runge-Kutta requires multiple data exchanges per time step 

•  Flux-Form Semi-Lagrangian & ADER do not 



Ways CPUs Improve Performance 
•  Pipelining: Just like the Ford factory’s assembly line 
–  Break instructions into many pieces 
– Different operations on different instructions is parallel 

•  Instruction Prefetching 
– CPU is too fast to wait for instructions from slow memory 

•  Branch Prediction 
–  Enables prefetching and pipelining across if and “go to” logic 
–  If you’re wrong, flush the pipeline and restart 

•  Out of Order Execution 
–  Analyze dependence in a sequence of instructions 
– While waiting on data, perform any independent computations 



Example: 4-Way Banked Memory 
•  Each 4-byte section belongs to a different bank 
•  Successive threads should access successive banks 

–  Access to different banks is completely parallel 
–  Access to the same bank is serialized 

•  For most GPUs, L1 cache is 16-way banked 
•  A warp of threads (32 threads) launches cache 

memory requests in two groups of 16 
–  These requests should be aligned with bank 0 
–  If in single precision and well-coded, the data should be 

retrieved in one cycle per request, as fast as registers 
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