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FV3 

• GFDL models

• AM3/CM3

• HiRAM

• CM2.5/2.6

• CAM-FV3

• LASG

• Academia Sinica

• GISS ModelE

• Hydrostatic, shallow-atmosphere model (nonhydrostatic version in 
development)

• Successor to latitude-longitude FV core in NASA GEOS, GFDL AM2.1, and 
CAM-FV

Thursday, August 9, 2012



FV3 Design Philosophy

• Discretization should be guided by physical principles as much as possible

• Finite-volume, integrated form of conservation laws

• Upstream-biased fluxes

• Operators “reverse engineered” to achieve desired properties
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Development of the FV3 core

• Lin and Rood (1996, MWR): Flux-form advection scheme

• Lin and Rood (1997, QJ): FV shallow-water solver

• Lin (1997, QJ): FV Pressure Gradient Force

• Lin (2004, MWR): Vertically-Lagrangian discretization

• Putman and Lin (2007, JCP): Cubed-sphere advection 

• Harris and Lin (in press, MWR): Describes FV3 and grid nesting
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Lin and Rood (1996, MWR)
Flux-form advection scheme

• 2D scheme derived from 1D PPM operators

• Advective form inner operators f, g, allow elimination of leading-order 
deformation error

• Allows preservation of constant tracer field under nondivergent flow

• Flux-form outer operators F, G ensure mass conservation

• All operators must be the same form to avoid Lauritzen instability
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Lin and Rood (1996, MWR)
Flux-form advection scheme

• PPM operators are upwind biased

• More physical, but also more diffusive

• Monotonicity/positivity constraint: important (implicit) source of model 
diffusion and noise control

• Nonlinear constraint, “adapts” to flow state

• Scheme maintains linear correlations between tracers when unlimited or 
when monotonicity constraint applied (not necessarily so for positivity)
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1D Advection Test

Lin and Rood 1996, MWR

4th order
centered

3rd order SL

FV
Monotone

FV
Positive
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Lin and Rood (1997, QJ)
FV shallow-water solver

• Solves layer-averaged vector-
invariant equations

• δp is proportional to layer mass

• θ: not in SW solver but is in full 
3D Solver

• Forward-backward timestepping

• PGF evaluated backward with 
updated pressure and height

2. The Nested Grid Model126

a. Finite-Volume Dynamical Core and cubed-sphere grid127

The FV core is a hydrostatic, 3D dynamical core using the vertically-Lagrangian dis-128

cretization of L04 and the horizontal discretization of Lin and Rood (1996, 1997, hence-129

forth LR96 and LR97, respectively), using the cubed-sphere geometry of PL07 and Putman130

(2007). This solver discretizes a hydrostatic atmosphere into a number of vertical layers, each131

of which is then integrated by treating the pressure thickness and potential temperature as132

scalars. Each layer is advanced independently, except that the pressure gradient force is133

computed using the geopotential and the pressure at the interface of each layer (Lin 1997).134

The interface geopotential is the cumulative sum of the thickness of each underlying layer,135

counted from the surface elevation upwards, and the interface pressure is the cumulative136

sum of the pressure thickness of each overlying layer, counted from the constant-pressure137

top of the model domain downward. Vertical transport occurs implicitly from horizontal138

transport along Lagrangian surfaces. The layers are allowed to deform freely during the139

horizontal integration. To prevent the layers from becoming infinitesimally thin, and to ver-140

tically re-distribute mass, momentum, and energy, the layers are periodically remapped to141

a pre-defined Eulerian coordinate system.142

The governing equations in each horizontal layer are the vector-invariant equations:143

∂δp
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147

where the prognostic variables are the hydrostatic pressure thickness δp of a layer bounded148

by two adjacent Lagrangian surfaces, which is proportional to the mass of the layer; the149

potential temperature Θ; and the vector wind V. Here, k̂ is the vertical unit vector. The150
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Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
The angle α is that between the covariant and contravariant components; in orthogonal
coordinates α = π/2.
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Lin and Rood (1997, QJ)
FV shallow-water solver

• Discretization on D-grid, with C-
grid winds used to compute 
fluxes

• D-grid winds interpolated to get 
C-grid winds, which are stepped 
forward a half-step for an approx. 
to time-centered winds

• Two-grid discretization and 
time-centered fluxes avoid 
computational modes

2. The Nested Grid Model126

a. Finite-Volume Dynamical Core and cubed-sphere grid127

The FV core is a hydrostatic, 3D dynamical core using the vertically-Lagrangian dis-128
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FV shallow-water solver:
Vorticity flux

• Nonlinear vorticity flux term in 
momentum equation

• D-grid allows exact computation of 
absolute vorticity—no averaging!

• Uses same flux as δp

• Consistent flux of mass and vorticity 
improves preservation of geostrophic 
balance

• Advantages to this form not apparent in 
linear analyses
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FV shallow-water solver:
Kinetic Energy Gradient

• Vector-invariant equations susceptible to Hollingsworth-Kallberg instability if 
KE gradient not consistent with vorticity flux

• Solution: use C-grid fluxes again to advect wind components, yielding an 
upstream-biased kinetic energy

• Consistent advection again!
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FV shallow-water:
Polar vortex test

• Note how well strong PV 
gradients are maintained
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Lin (1997, QJ)
Finite-Volume Pressure Gradient Force

• Computed from Newton’s 
second law and Green’s 
Theorem
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Lin (1997, QJ)
Finite-Volume Pressure Gradient Force

• Errors lower, with much less 
noise, compared to a finite-
difference pressure gradient 
evaluation

• Linear line-integral evaluation 
used in example yields larger 
errors near model top

• Now using fourth-order 
scheme to evaluate line 
integrals

Finite-Difference method

Finite-Volume method
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Lin (2004, MWR)
Vertically-Lagrangian Discretization

• Equations of motion are vertically-integrated to yield a series of layers

• Layers like shallow-water except θ is active

• Layers deform freely while horizontal equations integrated

• Only cross-layer interaction here is through pressure force
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Vertical remapping

• To perform vertical transport, and to avoid layers from becoming 
infinitesimally thin, we periodically remap to an Eulerian vertical coordinate

• Implicit cubic spline for remapping accuracy

• Implicit in vertical, so no message passing

• Remapping conserves mass and momentum

• Option to remap total energy as well, as well as to apply an energy fixer

• Vertical remapping is computationally expensive, but only needs to be done a 
few times an hour
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FV3 and the GFDL models

• Terrain following pressure coordinate: pk = ak + bkps

• Other coordinates possible eg. hybrid-isentropic

• Divergence damping: the other model dissipation process

• Fourth-order damping now standard

• Physics coupling is time-split

• Vertical diffusion implicit and coupled to land/ocean models
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Putman and Lin (2007, JCP)
Cubed-sphere advection

• Gnomonic cubed-sphere grid

• Coordinates are great circles

• Widest cell only √2 wider than 
narrowest

• More uniform than 
conformal, elliptic, or spring-
dynamics cubed spheres

• Tradeoff: coordinate is non-
orthogonal
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Putman and Lin (2007, JCP)
Non-orthogonal coordinate

• Gnomonic cubed-sphere is 
non-orthogonal

• Instead of using numerous 
metric terms, use covariant and 
contravariant winds

• Solution winds are covariant

• Advection is by 
contravariant winds

• KE is product of the two

α

D-grid winds

C-grid winds

Fluxes

Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
The angle α is that between the covariant and contravariant components; in orthogonal
coordinates α = π/2.
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Cubed-sphere edge handling

• Fluxes need to be the same across edges to preserve mass-conservation

• Gnomonic cubed sphere has ‘kink’ in coordinates at edge

• Currently getting edge values through two-sided linear extrapolation

• More sophisticated edge handling in progress
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Cubed-sphere scaling
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Number of Cores

Scaling of Hydrostatic Cubed Sphere Dynamical Core
 (25km with 47 levels) on the CRAY-XE6
MPI Ranks=864: OpenMP Threads=1,2,4,8,16

MPI Ranks=1944: OpenMP Threads=1,2,4,8,16
MPI Ranks=3456: OpenMP Threads=1,2,4,8

MPI Ranks=216,864,1944,3456,5400: OpenMP Threads=1
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Grid nesting:
Maritime continent 3:1 nest, c90 coarse grid

High cloud amount Total cloud amount

Precipitation OLR
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Stretched-grid aquaplanet
Precipitation

c720

c256r3

c256r3
    150° to 210°
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Stretched-grid aquaplanet
Tropical Cyclones

2681   cyclones
513    17.5 m/s
263    32.5 m/s

output/Kerr aqua planet c720.txt

2866   cyclones
722    17.5 m/s
206    32.5 m/s

output/Kerr aqua planet c256r3.txt
  c720   c256r3
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