Portable University Model of the Atmosphere
(PUMA)

Dynamical core of the PlanetSimulator (University Hamburg)

Original version

- Global spectral general circulation model of the dry
atmosphere

- Numerical solution of hydrostatic EULER equations for an
ideal gas on a rotating sphere

- Diabatic, dissipative processes: only Newtonian Cooling and
Rayleigh friction

Simple physics extension
- Inclusion of a vapor vapor transport equation

- Boundary layer and condensation scheme by Reed and Jablonowski
(2011)
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Summary of the governing PUMA equations
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Level arrangement for a five layer model (4o=1/N=1/5=0.2)
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Spectral method (Hoskins and Simmons 1975)

PUMA is based on a longitude-latitude grid. However, with spherical
coordinates singularities occur at the poles. These singularities induce a
collapse of coordinate lines into a single point.

Convergence
of meridians
near the pole

Source: http://www.personal.umich.edu/~cjablono/project.html

With the spectral method this problem can be solved. All fields are
represented by the expansion
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Linear terms are evaluated in spectral space while for nonlinear terms
the spectral transform method is applied. T
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Spectral triangular truncation

The condition that at least (3M+1) longitudes must be used leads to

typical values for the spectral truncation wavenumber.
The fastest performance of a Fast FOURIER Transform results when
2" (n integer) longitudes are given in the model.

Longitudes Truncation DCMIP Resolution
denotation at equator [km]
32 T10 1250.9
64 T21 625.5
128 T42 312.7
256 T85 LOW 156.4
512 T170 MEDIUM 78.2
1024 T341 HIGH 39.1
2048 T682 ULTRA 19.6



Semi implicit time integration scheme

. Linear part of PUMA can be solved without spectral transform method.
 This part describes high frequency gravity wave oscillations.

With the semi-implicit scheme the tendency is also a function of the
“unknown” new state vector X 9+1

X = XAt A X+ X

where A is the linear tendency operator of the linear part.
This scheme gives unconditional numerical stability

Hyperdiffusion

To dampen small-scale spatial noise a hyperdiffusion term of the form
(D" k0" F

Is added to the vorticity, divergence and temperature equations
where n, is the order of hyperdiffusion and k;, the coefficient.
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Flow diagram of the PUMA model code
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