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ABSTRACT

A system of equations is presented that unifies the nonhydrostatic anelastic system and the quasi-hydrostatic

compressible system for use in global cloud-resolving models. By using a properly defined quasi-hydrostatic

density in the continuity equation, the system is fully compressible for quasi-hydrostatic motion and anelastic

for purely nonhydrostatic motion. In this way, the system can cover a wide range of horizontal scales from

turbulence to planetary waves while filtering vertically propagating sound waves of all scales. The continuity

equation is primarily diagnostic because the time derivative of density is calculated from the thermodynamic

(and surface pressure tendency) equations as a correction to the anelastic continuity equation. No reference

state is used and no approximations are made in the momentum and thermodynamic equations. An equation

that governs the time change of total energy is also derived. Normal-mode analysis on an f plane without the

quasigeostrophic approximation and on a midlatitude b plane with the quasigeostrophic approximation is

performed to compare the unified system with other systems. It is shown that the unified system reduces the

westward retrogression speed of the ultra-long barotropic Rossby waves through the inclusion of horizontal

divergence due to compressibility.

1. Introduction

The nonhydrostatic anelastic system of equations

(called the anelastic system in this paper) is widely used

in theoretical and numerical studies of small-scale

nonacoustic motions, such as turbulence and convec-

tion, while most large-scale models use the compressible

quasi-hydrostatic system (the ‘‘primitive equations,’’

called the quasi-hydrostatic system in this paper) as the

dynamics core. Both of these systems filter vertically

propagating sound waves, but they do so in quite dif-

ferent ways.

In the anelastic system (e.g., Ogura and Phillips 1962;

Dutton and Fichtl 1969; Wilhemson and Ogura 1972;

Lipps and Hemler 1982; Bannon 1996), the deviations of

thermodynamic variables from a horizontally uniform

reference state are assumed to be small, and the local

time derivative of density is neglected in the continuity

equation to filter the acoustic waves. Thus, the original

continuity equation

›r

›t
1 $ � ðrVÞ5 0 (1.1)

is replaced by

$ � ðr0VÞ5 0, (1.2)

where r is the density, = is the three-dimensional del

operator, V is the three-dimensional velocity, and the

subscript zero denotes a reference state that varies only

vertically. To maintain the internal consistency of the

system from the point of view of scale analysis and/or

energetics, either the momentum or thermodynamic

equation is usually modified. For example, Ogura and

Phillips (1962) chose an isentropic atmosphere as the

reference state, while Lipps and Hemler (1982) assumed

that the reference-state potential temperature is a

slowly varying function of the vertical coordinate. The

pressure gradient force in the momentum equation is

then approximated to maintain the consistency. Bannon

(1996), on the other hand, maintains the consistency by
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modifying the thermodynamic equation introducing the

concept of the ‘‘dynamic entropy.’’ By ‘‘the anelastic

system,’’ we mean the Lipps–Hemler system in the rest

of this paper unless otherwise noted.

We note, however, that the use of the anelastic con-

tinuity equation in (1.2) is more than needed to filter

acoustic waves. Using the equation of state and the

definition of potential temperature u, we find

›r

›t
5

r

gp

›p

›t

� �
u

�
r

u

›u

›t

� �
p

, (1.3)

where p is the pressure, g [ cp/cy, and cp and cy are the

specific heat at constant pressure and volume, respec-

tively. The first and second terms on the right-hand side

of (1.3) represent the local effects of isentropic com-

pressibility and isobaric entropy change, respectively.

The anelastic continuity equation neglects both of these

effects. Durran (1989) showed that the inclusion of a

linearized effect of the second term yields

$ � ð�r�uVÞ5
�rQ

cp �p
, (1.4)

where the overbar denotes the horizontal mean state,

which may have an arbitrary vertical structure, p is the

Exner function given by (p/p00)k, p00 is a constant ref-

erence pressure, k [ R/cp 5 1 2 1/g, R is the gas con-

stant, and Q is the heating rate per unit mass. Acoustic

waves are still filtered because the first term on the

right-hand side of (1.3) is neglected. Durran (1989)

called (1.4) ‘‘the pseudo-incompressible equation.’’

Nance and Durran (1994) showed that (1.4) becomes

increasingly accurate as the flow becomes more non-

hydrostatic. Durran (2008) further showed that the

pseudo-incompressible equation is accurate if the Mach

number is smaller than the Rossby number or 1,

whichever is smaller. Durran and Arakawa (2007)

showed that when (1.4) is used, energy is conserved with

no modifications of the momentum and thermodynamic

equations except for linearization. Durran (2008) pre-

sented further discussions of the pseudo-incompressible

system and its generalizations.

The merit of using the anelastic or pseudo-

incompressible approximation for small-scale motions

is well recognized. Although our experience is rather

limited, these approximations seem to hold well for

most large-scale atmospheric motions as well. Nance

and Durran (1994) pointed out that the errors incurred

by using both the anelastic and pseudo-incompressible

systems could be significantly less than the errors gen-

erated by the numerical methods. By analyzing the re-

sults of an anelastic model applied to the global domain,

Smolarkiewicz et al. (2001) further pointed out, ‘‘the

differences due to the higher-order truncation errors of

legitimate modes of executing contemporary global

models overwhelm the differences due to analytic for-

mulation of the governing equations.’’ Through this

analysis, they conclude that nonhydrostatic anelastic

models derived from small-scale codes adequately

capture a broad range of planetary flows. Smolarkiewicz

and Dörnbrack (2008) presented integrations of the

anelastic and pseudo-incompressible systems applied to

baroclinic development in the midlatitudes.

There are, however, conflicting views. Based on

normal-mode analyses of fully compressible, pseudo-

incompressible, anelastic and quasi-hydrostatic systems

of equations applied to an f plane, Davies et al. (2003)

concluded, ‘‘whilst of key importance for small-scale

and process modeling, the anelastic equations are not

recommended for either operational numerical predic-

tion or climate simulation at any scale.’’ They also

pointed out that the pseudo-incompressible system ap-

pears to be viable for numerical weather prediction, but

only at short horizontal scales.

A potentially more serious problem appears with the

b effect when an anelastic model is applied to a hemi-

spheric or global domain. With the anelastic continuity

equation in (1.2), horizontal motions must inevitably be

horizontally nondivergent. The situation is the same

with the pseudo-incompressible equation in (1.4) with-

out heating because the mean state is horizontally uni-

form. Then, as far as the barotropic mode with a fixed

upper boundary is concerned, we are essentially back to

the problem recognized during the early years of NWP.

Wolff (1958) showed that forecast errors with a hemi-

spheric nondivergent barotropic model are dominated

by spuriously fast westward retrogression of ultra-long

waves. This is anticipated from the retrogression speed

of the nondivergent Rossby wave given by b/k2 (Rossby

et al. 1939), which unlimitedly increases as k decreases.

Here b is the meridional gradient of the Coriolis pa-

rameter f and k is the zonal wavenumber. Rossby et al.

(1939) pointed out, however, that conservation of the

absolute potential vorticity, ð f 1 zÞ/h, instead of con-

servation of the absolute vorticity, f 1 z, gives slower

retrogression speeds. Here z is the vertical component

of vorticity and h is the height of the interface between

the lower dynamically active homogeneous layer and

the upper dynamically inactive homogeneous layer.

Based on this and the work by Bolin (1956), who used

the height of tropopause for h, Cressman (1958) suc-

ceeded to reduce the errors in actual forecasts by in-

troducing a correction term in the vorticity equation to

represent ‘‘barotropic divergence.’’ Wiin-Nielsen (1959)

pointed out that the problem exists also for the baro-

tropic mode in tropospheric baroclinic models. He
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noted that Cressman’s choice of h is rather ambiguous

and interpreted the required divergence term as a result

of vertically varying static stability. It is difficult to see,

however, how the vertical variation of static stability

influences the barotropic (or external) Rossby wave.

Wedi and Smolarkiewicz (2004, 2006), on the other

hand, introduced divergence of the vertically integrated

motion into their anelastic model by making the model

top variable in space and time. In the present paper we

point out that even purely horizontal motion can be

divergent with compressibility so that its potential vor-

ticity is given by ð f 1 zÞ/r, where the denominator

represents the effect of compressibility on the change of

f 1 z.

Most large-scale models of the atmosphere use the

quasi-hydrostatic system of equations (the primitive

equations) instead of the anelastic system. In the quasi-

hydrostatic system, the vertical component of the mo-

mentum equation is replaced by the hydrostatic equa-

tion. This filters vertically propagating sound waves, but

it is done in a totally different way from the anelastic

system. The quasi-hydrostatic system uses no approxi-

mation in the continuity equation and, therefore, com-

pressibility is fully included as far as quasi-hydrostatic

motions are concerned. To our knowledge, catastrophic

errors for ultra-long waves such as those observed by

Wolff (1958) with the nondivergent barotropic model

have not been reported with the primitive equation

models. We can think of various reasons for this. For

example, the purely barotropic mode may not be a sig-

nificant component in such models when they are ap-

plied to realistic situations. It is also possible that the

improved treatment of planetary-scale topography com-

monly used in those models might have hidden the

problem. In our point of view, however, the effect of

compressibility on those waves included in the primitive

equation models is at least one of the possible causes for

the success of those models in predicting ultra-long waves.

It is well known that the quasi-hydrostatic approxi-

mation breaks down for motions with horizontal scales

of the order of 10 km or less. There have been attempts

to overcome this deficiency by including approximate

nonhydrostatic effects without introducing vertically

propagating sound waves. One of the earliest attempts

along this line is the approach proposed by Miller (1974)

(see also Miller and Pearce 1974; Miller and White 1984;

White 1989), which uses the pressure as the vertical

coordinate and the approximation Dw/Dt ’ Dð�v/rsgÞ/

Dt in the vertical component of the momentum equa-

tion. Here D/Dt is the material time derivative, w is the

vertical velocity, v [ Dp/Dt, rs is the density of the

reference state, and g is the gravitational acceleration.

They used the standard form of the quasi-hydrostatic

continuity equation with the p coordinate without in-

troducing the anelastic approximation. This is also an

approximation since p in their system is not necessarily

hydrostatic. Miller (1974) showed that, when viewed

with the z coordinate, this approximation is equivalent

to the use of the hydrostatic equation for the time de-

rivative of density in the continuity equation in (1.1).

In the approach proposed by Laprise (1992), on the

other hand, the hydrostatic pressure is used as the ver-

tical coordinate. Despite the use of the hydrostatic

pressure for the vertical coordinate, no approximation is

used in the momentum and continuity equations and,

therefore, the system is nonhydrostatic and fully com-

pressible. In his ‘‘alternative approach,’’ w is calculated

using w ’ Dz/Dt. Thus, the vertical component of the

momentum equation is not used as a prognostic equa-

tion for w. Instead, it is used as a diagnostic equation

that determines the vertical gradient of the total pres-

sure from known Dw/Dt. Bubnová et al. (1995) em-

phasized the merit of Laprise’s approach saying ‘‘. . .all

the big investments that have been put into developing

complex environments for primitive equation models

can be used with profit to do nonhydrostatic research

experiments and, in some future, operational fore-

casts.’’ Janjic et al. (2001) and Janjic (2003) extended

Laprise’s alternative approach to the case of a sigma

coordinate based on the hydrostatic pressure. They also

emphasized the advantage of Laprise’s approach be-

cause the nonhydrostatic dynamics is introduced as an

add-on module without interfering with the favorable

features of the hydrostatic formulation.

The main thrust of this paper is to develop a system of

dynamics equations that maintains close ties with both

the primitive equation models for large scales and the

anelastic (and Boussinesq) models for small scales, for

each of which we have generations of valuable experi-

ence, while filtering vertically propagating sound waves

of all scales. An obvious alternative to this approach is

to use a fully compressible model with the split-explicit

approach (Klemp and Wilhemson 1978; Skamarock and

Klemp 1992, 1994; Klemp et al. 2007) or a semi-implicit

scheme (e.g., Tanguay et al. 1990; Cullen et al. 1997;

Côté et al. 1998). For a concise review of these methods,

see Steppeler et al. (2003). In the approach presented in

this paper, on the other hand, the vertically propagating

sound waves are eliminated at their origin so that our

effort in improving computational aspects can be more

focused on motions of our interest.

The essence of the unified system presented in this

paper is in the use of the continuity equation:

›rqs

›t
1 $ � ðrqsVÞ5 0, (1.5)
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where rqs is the quasi-hydrostatic density. This equation

is a straightforward generalization of the anelastic con-

tinuity equation in (1.2) and the pseudo-incompressible

equation in (1.4) and, when applied to quasi-hydrostatic

motions, it includes both terms in the right-hand side of

(1.3). The use of (1.5) obviously requires

dr

rqs

� 1, (1.6)

where dr [ r � rqs is the nonhydrostatic density. This

assumption should be better justifiable than the corre-

sponding assumption commonly used in the anelastic

systems because dr is the deviation of r from the local

quasi-hydrostatic value rather than the value of a pre-

scribed reference state that varies only vertically. This

point is especially important when the system is applied

to a large horizontal domain such as the entire globe.

The assumption in (1.6) alone, however, does not au-

tomatically justify the use of (1.5) because the time

derivative of dr cannot be neglected for vertically

propagating sound waves because of their high fre-

quencies. The unified system filters these waves through

omitting the ›dr/›t term in (1.5). Since the ›rqs/›t term

is retained, this equation may still appear to be prog-

nostic, but actually it is not, because rqs is predicted not

by this equation, but by the thermodynamic (and sur-

face pressure tendency) equations.

The paper is organized as follows. Section 2 presents

the definitions of the quasi-hydrostatic pressure and

density and the equations for their predictions, includ-

ing the condition on the time change of the quasi-

hydrostatic pressure at the model top, and section 3

presents the dynamics of the unified system including

the problem of determining nonhydrostatic pressure.

Section 3 also presents an equation that governs the

time change of total energy. Section 4 gives a compu-

tational procedure of the unified system that can be

followed when the height coordinate is used. Section 5

presents the unified system when the quasi-hydrostatic

pressure is used as the vertical coordinate. For the

purpose of comparing the unified system with other

systems, section 6 discusses small-amplitude perturba-

tions on a resting horizontally uniform atmosphere in

view of the dispersion relation and vertical structure of

the normal modes on an f plane. The analysis is then

extended to the midlatitude b plane with the quasi-

geostrophic approximation. Section 7 presents a sum-

mary and further discussions. The form of energy

conserved in this system is presented in appendix A. A

version of the unified system based on the vector vor-

ticity equation instead of the momentum equation is

presented in appendix B.

2. Quasi-hydrostatic pressure

In this section we define quasi-hydrostatic values of

pressure and density and then discuss how those values

are predicted in the unified system. Throughout this

paper, the virtual temperature effect is neglected for

simplicity. Using the equation of state p 5 rRT and the

definition of potential temperature u [ T/p, we may

write the momentum equation as

DV

Dt
5 �2V 3 V� cpu$p � kg 1 F. (2.1)

Here V is the earth’s angular velocity and k is the ver-

tical unit vector. Replacing the vertical component of

(2.1) by the hydrostatic equation, we define the vertical

derivative of pqs for a given vertical structure of u by

›pqs

›z
[ �

g

cpu
. (2.2)

Integrating (2.2) with respect to z, we obtain

pqs 5 ðpqsÞS �

ðz

zS

g

cpu
dz, (2.3)

where the subscript S denotes the earth’s surface. Re-

placing p in p 5 p00p1/k by pqs, we define pqs by

pqs [ p00p1/k
qs (2.4)

and rqs by

›pqs

›z
[ �rqsg. (2.5)

These quasi-hydrostatic values do not necessarily rep-

resent a reference state because the vertical distribution

of u in (2.3) is arbitrary and, therefore, pqs and rqs do not

necessarily have characteristic vertical structures. From

the definitions of the quasi-hydrostatic state given by

(2.2), (2.4), and (2.5), we find

rqs 5
pqs

R pqsu
5

pk
00

R u
p1�k

qs

� �
. (2.6)

This equation and the assumption in (1.6) implies that

we are also assuming

dp

pqs

� 1 (2.7)

though it is not formally used in the equations given in

the text.

Equation (2.3) shows that (pqs)S and u must be pre-

dicted to determine the time evolution of the quasi-
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hydrostatic state. To predict u, we use the following

thermodynamic equation:

D

Dt
ln u 5

Q

cpT
. (2.8)

To predict (pqs)S, we apply the time derivative of (2.3)

to z 5 zT to obtain

›

› t
ðpqsÞS 5

›

› t
ðpqsÞT �

ðzT

zS

g

cpu2

›u

› t
dz, (2.9)

where the subscript T denotes the model top. Here zT

(as well as zS) is assumed to be constant in time. The

first term on the right-hand side, however, remains to

be determined because ›(pqs)T/›t 5 0 is not a correct

condition at the model top even when zT ! ‘. To see

this, let us consider a small perturbation denoted by a

prime on a horizontally uniform basic state denoted by

an overbar. The perturbation part of (2.2) is given by

›p9qs

›z
’

g

cp
�u2

u9. (2.10)

If u95 0 (i.e., barotropic) at all heights, (2.10) shows that

p9
qs

is constant throughout the entire vertical column.

The assumption of ðp9qsÞT 5 0 thus means p9qs 5 0 at all

heights. Barotropic modes are then eliminated. Since

p9qs ’ kp9qsð�pqs/�pqsÞ 5 ðk/pk
00Þ ðp9qs/�p

1�k
qs Þ, constant p9qs

means that p9qs decreases in height as �p1�k
qs ð5�p 1/g

qs Þ

does. This is consistent with the fact that free quasi-

hydrostatic oscillations in an isothermal atmosphere,

such as the Lamb wave (modified by rotation) and the

barotropic Rossby wave (modified by compressibility),

have the equivalent depth gH, where H is the scale

height (e.g., Siebert 1961).

We see that (2.9) can be closed if we consider the

mass budget of the entire vertical column. For this

purpose, we rewrite the continuity equation in (1.5) as

›rqs

›t
5 �$ � ðrqsVHÞ �

›

›z
ðrqswÞ. (2.11)

Hereinafter the subscript H denotes the horizontal

component and w is the vertical velocity. Integrating the

time derivative of (2.5) with respect to z from zS to zT,

using (2.11) and wS 5 VH � $zS, and assuming zT 5

const. in space as well as in time, we obtain the surface-

pressure tendency equation given by

›

›t
ðpqsÞS 5

›

›t
ðpqsÞT � g$H �

ðzT

zS

rqsVH dz. (2.12)

Though not fully justifiable, we have neglected ðrqswÞT
in deriving (2.12) as is done in many models.

Both (2.12) and (2.9) are obtained through vertically

integrating the time derivative of the hydrostatic

equation. Their physical meanings are different, how-

ever, because (2.12) relates the integral to mass budget

while (2.9) relates it to thermodynamics. Naturally they

must be consistent in view of (2.4). The time derivative

of (2.4) applied to the earth’s surface and the model top

are given by

›

› t
ð pqsÞS 5

1

k

pqs

pqs

� �
S

›

› t
ðpqsÞS (2.13)

and

›

› t
ð pqsÞT 5

1

k

pqs

pqs

� �
T

›

› t
ðpqsÞT , (2.14)

respectively. Substituting (2.13) and (2.14) into (2.12)

and eliminating ›ðpqsÞS/›t using (2.9), we obtain

›

› t
ðpqsÞT 5

1

ð pqs/pqsÞS � ð pqs/pqsÞT

3 ð pqs/pqsÞS

ðzT

zS

g

cpu2

›u

› t
dz� kg$H �

ðzT

zS

rqsVH dz

" #
.

(2.15)

Since the two terms in the brackets do not necessarily

cancel, ›(pqs)T/›t is generally finite even when (pqs)T 5

0. Since pqs/pqs 5 pk
00 p1�k

qs ! 0 as pqs ! 0, however,

(2.14) shows that ›(pqs)T/›t 5 0 holds when (pqs)T 5 0,

as expected, but not when (pqs)T 6¼ 0. With (2.15), (2.9)

is closed and may be rewritten as

›

› t
ðpqsÞS 5

1

ðpqs/pqsÞS � ðpqs/pqsÞT

3 ð pqs/pqsÞT

ðzT

zS

g

cpu2

›u

› t
dz� kg$H �

ðzT

zS

rqsVH dz

" #
.

(2.16)

3. Dynamics of the unified system and determination
of the nonhydrostatic pressure

In this section we discuss the dynamics equations of

the unified system, in which the continuity equation

takes the form of (1.5). Since the unified system is a

generalization of the anelastic system, the procedure is

parallel to that of the anelastic system except that the

continuity equation is exact for quasi-hydrostatic mo-

tion. When the momentum equation is used as the basic

dynamical equation (instead of the vector vorticity

equation as discussed in appendix B), the predicted
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three-dimensional velocity must satisfy the continuity

equation. Thus, in parallel to the anelastic system, an elliptic

equation must be solved for the nonhydrostatic pressure.

Using D/Dt 5 ›/›t 1 V � $ and (2.2), we rewrite the

momentum equation in (2.1) as

›V

›t
5 �ðV � $ÞV� 2V 3 V� cpuð$H pqs 1 $dpÞ1 F,

(3.1)

where dp [ p � pqs. Combining (3.1) with the conti-

nuity equation in (1.5), we obtain

›

›t
ðrqsVÞ5 �$ � ðrqsVVÞ � 2V 3 rqsV

� cprqsuð$H pqs 1 $dpÞ1 rqsF, (3.2)

where $ � ðrqsVVÞ is the divergence of the dyadic ten-

sor rqsVV. When yi is the ith component of V in the

Cartesian coordinates ðx1, x2, x3Þ, the ith component of

$ � ðrqsVVÞ can be written as

[$ � ðrqsVVÞ]i 5
›

›xj
ðrqsyjyiÞ. (3.3)

Taking the divergence of (3.2) and using the continuity

equation (1.5) again, we obtain

$ � ðcprqsu$dpÞ5 �$ � [$ � ðrqsVVÞ1 2V rqsV

1 cprqsu$Hpqs � rqsF] 1
›2rqs

›t2
.

(3.4)

This is an elliptic equation to determine dp. In the an-

elastic models, a similar elliptic equation is solved, but

usually for the deviation of pressure from a horizontally

uniform hydrostatic state. In the unified system, on the

other hand, (3.4) governs the deviation of pressure from

the local quasi-hydrostatic pressure. Another important

difference from the anelastic system is the existence of

the last term in (3.4), which originates from the time

derivative term in the continuity equation in (1.5). It

thus represents a correction to the anelastic system. An

expression for this term in the time-discrete case is

presented in section 4.

Equation (3.4) requires boundary conditions. For

vertical boundary conditions, it is a common practice in

the anelastic models to use the vertical derivative of

pressure obtained from the vertical component of the

momentum equation applied to the upper and lower

boundaries. We can do the same in the unified system,

but in this way the spatially constant part of dp cannot

be determined. While this constant part does not matter

for dynamics (Ogura and Charney 1962), it does matter

for cloud microphysics as Schlesinger (1975) pointed

out. Bannon et al. (2006) showed that this ambiguity

could be removed by requiring total mass conservation.

On the other hand, P. Smolarkiewicz (2008, personal

communication) suggests using this freedom to conserve

energy. Unless we enforce such kind of constraint on the

constant part, the time sequence of dp diagnostically

determined at individual time steps may not be physical.

Recall that only the spatially varying part of dp

matters for dynamics and, therefore, only that part

needs to be constrained for filtering vertically propa-

gating sound waves. Then, if we are concerned with the

most general filtered system, the spatially constant part

of dp should be predicted as is done (or effectively

done) in a fully compressible nonhydrostatic model.

Here we show that, by predicting the spatially constant

part of dp, the system can conserve a properly defined

energy. Appendix A derives the following equation

from the equations of the unified system:

›

› t
[rqsðEqs 1 cpdTÞ] 1 $ � [VðrqsEqs 1 pÞ]

5
1

k

pqs

pqs

›

› t
dp. (3.5)

In (3.5), Eqs is the quasi-hydrostatic energy per unit mass

given by

Eqs [
1

2
V2 1 gz 1 cyTqs, (3.6)

where

Tqs [ pqsu 5
1

R

pqs

rqs

, (3.7)

and dT is defined by

cpdT [
dp

rqs

. (3.8)

The cpdT term in (3.5) represents the enthalpy change

per unit mass due to the change of dp through an adi-

abatic process. Equation (3.5) shows that

›

› t
rqsðEqs 1 cpdTÞ5 0 (3.9)

if

pqs

pqs

›

› t
dp 5 0, (3.10)

where the double overbar denotes the volume mean

over the entire domain. Then the mass-weighted

mean of the energy Eqs 1 cpdT is conserved. Let ðdpÞ�

represent the solution of (3.4) with ðdpÞ� 5 0. We see

that dp given by
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dp 5 ðdpÞ�1 dp (3.11)

satisfies both (3.4) and (3.10) if dp is determined by

›

› t
dp 5 �

pqs

pqs

›

› t
ðdpÞ�/

pqs

pqs
. (3.12)

Equation (3.12) means that dp is prognostically deter-

mined. For an expression of (3.12) for a time-discrete

case, see the next section.

Once dp is determined, we can predict the horizontal

velocity VH using the horizontal component of (3.1) or

(3.2). We could also predict w using the vertical com-

ponent of (3.1) or (3.2). However, since the vertical

component has already been used in deriving (3.4), w

can be more simply determined from (2.11) with known

›rqs/›t. In this way, it is guaranteed that the continuity

equation is exactly satisfied in a time-discrete case. We

can show that this procedure is closely related to the

determination of w using the Richardson equation

(Richardson 1922, p. 118) for the quasi-hydrostatic

system. To show this, we first rewrite (2.11) with (2.6) as

›w

›z
5 �

›

›t
1 w

›

›z

� �
ln rqs �

1

rqs

$H � ðrqsVHÞ

5 �
1� k

pqs

›

›t
1 w

›

›z

� �
pqs 1

›

›t
1 w

›

›z

� �

ln u�
1

rqs

$H � ðrqsVHÞ. (3.13)

Further manipulating (3.13) using (2.5), (2.11), ðrqswÞT 5 0,

and (2.5), we finally obtain

›w

›z
5 �

1

rqs

$H � ðrqsVHÞ �
1� k

pqs

›

› t
ðpqsÞT

�

�g$H �

ðzT

z

rqsVH dz

�
�VH � $H ln u 1

Q

cpT
.

(3.14)

If the first term in the brackets is neglected, (3.14) es-

sentially becomes the Richardson equation, which is

still complicated. The complication is partly due to the

use of the pressure tendency equation at all levels, as

pointed out by Ooyama (1990), while only its applica-

tion to the earth’s surface given by (2.12) is needed. A

more fundamental problem is that the Richardson

equation is not physically illuminating. Recall that the

anelastic approximation neglects the term on the left-

hand side of (2.11). It is then appropriate to regard that

term as a generally small correction to the anelastic

approximation. Equation (3.14) splits this correction

term into the sum of larger terms that exactly com-

pensate each other when the motion is anelastic.

4. Computational procedure with the height
coordinate

This section discusses a procedure that can be followed

in practical applications of the unified system with the

z coordinate. The prognostic variables of the unified

system are (pqs)S, u, and (rqsVH). The major diagnostic

variables are pqs, pqs, rqs, dp, and (rqsw) determined by

(2.3), (2.4), (2.6), (3.4), with (3.12) and (2.11), respec-

tively. Let the integer n denote a time level. Suppose that

we know all variables except for dp at time level n (and

at past time levels if necessary) and we have a time-

difference scheme for advancing ðpqsÞ
ðnÞ
S , u(n), and

(rqsVH)(n) to ðpqsÞ
ðn11Þ
S , u(n11), and (rqsVH)(n11) based on

(2.16), (2.8), and the horizontal component of (3.2), re-

spectively. We write these schemes symbolically as

ðpqsÞ
ðn11Þ
S � ðpqsÞ

ðnÞ
S 5 G1, (4.1)

uðn11Þ � uðnÞ5 G2, (4.2)

and

ðrqsVHÞ
ðn11Þ
� ðrqsVHÞ

ðnÞ5 G3 � DtðrqscpuÞðnÞ$HðdpÞn,

(4.3)

where Dt is the time step and the term that depends on

ðdpÞn is explicitly written. For convenience, the value at

the time level n is used for ðrqscpuÞ. To derive a time-

discrete version of (3.4), we also need to specify a time

difference scheme for the vertical component of (3.2),

which may be symbolically written as

ðrqswÞ
ðn11Þ
� ðrqswÞ

ðnÞ5 G4 � DtðrqscpuÞðnÞ
›

›z
ðdpÞn.

(4.4)

From ðpqsÞ
ðn11Þ
S and u(n11) predicted by (4.1) and (4.2),

respectively, rðn11Þ
qs can be determined by (2.3), (2.4),

and (2.6). To obtain a discrete version of (2.11), let us

formally use a backward time-difference scheme to obtain

›

›z
ðrqswÞ

ðn11Þ 5 �$H � ðrqsVHÞ
ðn11Þ

�
1

Dt
[rðn11Þ

qs � rðnÞqs ]. (4.5)

This time discretization has only the first-order accur-

acy. This is probably acceptable because the last term is

supposed to represent a relatively small correction to

the anelastic continuity equation. Moreover, rqs is likely

to change in time rather slowly compare to purely

nonhydrostatic variables for which Dt is chosen. Ap-

plying $H � and ›/›z to (4.3) and (4.4), respectively,

taking the sum, and using (4.5), we obtain the following:
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$H�[ðrqscpuÞðnÞ$HðdpÞðnÞ]1
›

›z
ðrqscpuÞðnÞ

›

›z
ðdpÞðnÞ

� �

5
1

Dt
$H �G3 1

›

›z
G4

� �
1

1

ðDtÞ2
[rðn11Þ

qs 1rðn�1Þ
qs �2rðnÞqs ].

(4.6)

This is a time-discrete version of (3.4). Note that the

right-hand side including rqs
(n11) is known.

When we desire to fully determine ðdpÞðnÞ including

ðdpÞðnÞ, which is the volume mean of ðdpÞðnÞ, we use the

discrete version of (3.12) given by

After solving (4.6) for ðdpÞðnÞ, (rqsVH)(n11) can be de-

termined by (4.3). Then ðrqswÞ
ðn11Þ can be found by a

downward integration of (4.5) assuming ðrqswÞ
ðn11Þ
T 5 0.

5. The unified system based on the quasi-hydrostatic
pressure coordinate

One of the main points of the unified system is that it

reduces to a quasi-hydrostatic model when the non-

hydrostatic pressure is neglected. In this way, the system

maintains a close tie with the existing primitive equation

models. But practically all existing primitive equation

models use the pressure coordinate or its variants, and

thus there is an advantage of using such a coordinate in

the unified system to have the same vertical structure

as the conventional large-scale models. The merit of

Laprise’s approach of using the quasi-hydrostatic pres-

sure as the vertical coordinate in nonhydrostatic models

(see section 1) can be even greater for the unified system

because the system explicitly deals with the quasi-

hydrostatic values of thermodynamic state variables. In

this section, we present the unified system based on the

quasi-hydrostatic pressure coordinate.

Using the definition of pqs given by (2.4), we may

rewrite the hydrostatic equation [(2.2)] as

›z

›pqs

5 �
R

g

pqs

pqs

u. (5.1)

Integrating (5.1) vertically with respect to pqs, we obtain

z 5 zS 1

ð
ðpqsÞS

pqs

R

g

pqs

pqs

u dpqs. (5.2)

This corresponds to (2.3). The time derivative of (5.2)

gives

›z

›t

� �
pqs

5
R

g

pqs

pqs

u

 !
S

›pqs

›t

� �
S

1

ð
ðpqsÞS

pqs

R

g

pqs

pqs

›u

›t

� �
pqs

dpqs.

(5.3)

Thus, (pqs)S and u must be predicted, as in the z-

coordinate case, but this time to determine the time

evolution of the height field. The thermodynamic

equation in (2.8) to predict u is now written as

›u

›t

� �
pqs

5 � VH � $pqs
1 v

›

›pqs

 !
u 1

Q

cpp
, (5.4)

where v is defined by

v [
Dpqs

Dt
. (5.5)

Using the hydrostatic equation in (2.5), the continuity

equation in (2.11) can be rewritten as

$pqs
�VH 1

›v

›pqs

5 0. (5.6)

It should be noted that, unlike in the usual quasi-hy-

drostatic p-coordinate system, (5.6) is a consequence of

the definitions of pqs and v, and not of the quasi-

hydrostatic approximation. Let us assume that the

model top is a material surface with a constant pqs.

Then we have vT 5 0. The vertical integral of (5.6)

then gives

vS 5 ðVHÞS � $ð pqsÞS � $ �
ð
ðpqsÞS

ðpqsÞT

VH dpqs. (5.7)

Since the earth’s surface is a material surface, vS can

also be written as

vS 5
›pqs

›t

� �
S

1 ðVHÞS � $ðpqsÞS. (5.8)

Equating (5.7) and (5.8), we obtain

›pqs

›t

� �
S

5 �$ �
ð
ðpqsÞS

ðpqsÞT

VH dpqs. (5.9)

ðdpÞðnÞ � ðdpÞðn�1Þ5 [ðp1�k
qs Þ

ðnÞ1 ðp1�k
qs Þ

ðn�1Þ][ðdpÞ� nð Þ
� ðdpÞ� ðn�1Þ] / [ðp1�k

qs Þ
ðnÞ1 ð p1�k

qs Þ
ðn�1Þ]. (4.7)
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Equation (5.3) is now closed. This procedure is simpler

than that with the z coordinate mainly because we now

have ð›pqs/›tÞT 5 0.

As in the z-coordinate case, the spatially varying part

of the nonhydrostatic pressure dp can be determined by

requiring that the velocity field predicted by the mo-

mentum equation satisfy the continuity equation, which

now takes the form of (5.7). We begin with the mo-

mentum equation written in the following form:

DV

Dt
5 �2V 3 V�

1

rqs

$Hpqs

�
1

rqs

$H 1 k
›

›z

� �
dp� kg

dr

rqs

1 F. (5.10)

Here the assumption in (1.6) and the definition of rqs

given by (2.5) have been used. Transforming the vertical

coordinate in (5.10) from z to pqs and taking the hori-

zontal and vertical components, we obtain

›VH

›t

� �
pqs

5 �JH �
1

rqs

$pqs
1 g$pqs

z
›

›pqs

 !
dp (5.11)

and

›w

›t

� �
pqs

5 �Jz 1 g
›

›pqs

dp, (5.12)

where the three-dimensional vector J is defined by

J [ �ðV � $pqs
ÞV� v

›V

›pqs

� 2V 3 V

� g$pqs
z� k

dr

rqs

g 1 F. (5.13)

From (5.11), we obtain

›

›t

� �
pqs

$Pqs
�VH 5 �$Pqs

� JH

� $Pqs
�

1

rqs

$pqs
1 g$pqs

z
›

›pqs

 !
dp.

(5.14)

From w 5 ð›/›t 1 VH � $Þpqs
z 1 v ›z/›pqs 5 ð›/›t 1

VH � $Þpqs
z� v/rqsg, on the other hand,

v 5 �rqsgðw� wCÞ, (5.15)

where

wC [
›

›t
1 VH � $

� �
pqs

z. (5.16)

Substituting (5.15) into the continuity equation in (5.6)

results in

$pqs
�VH �

›

›pqs

[rqsgðw� wCÞ] 5 0. (5.17)

Since wC includes the term ›z/›t, (5.17) could be viewed

as a prognostic equation for z. The point of the unified

system is, however, z is predicted through (5.3) and,

therefore, the continuity equation in (5.17) is used as a

diagnostic equation. In this way, vertically propagating

sound waves are filtered.

Taking the time derivative of (5.17) and then using

(5.14) and (5.12), we finally obtain

$pqs
�

1

rqs

$pqs
1 g$pqs

z
›

›pqs

 !
dp 1 g2 ›

›pqs

rqs

›

›pqs

dp

 !

5 � $pqs
�VH 1 g

›

›pqs

ðrqs JzÞ

� g
›

›pqs

w
›rqs

›t

� �
pqs

�
›

›t

� �
pqs

ðrqswCÞ

" #
.

(5.18)

Time discretization of (5.18) can follow (4.6) using the

already predicted values of rðn11Þ
qs and zðn11Þ. Determi-

nation of the spatially constant part of dp can follow the

procedure for determining the spatially constant part of

dp described in sections 3 and 4.

If desired, the vertical coordinate used in the equa-

tions presented here can further be transformed to a

sigma coordinate as Janjic et al. (2001) and Janjic (2003)

did in their nonhydrostatic model.

6. Small-amplitude perturbations on a resting
atmosphere

To compare the unified system with other commonly

used systems, this section discusses small-amplitude

perturbations on a resting, horizontally uniform at-

mosphere. For simplicity, the motion is assumed to be

adiabatic and frictionless. The standard z coordinate is

used for this analysis.

a. Linearized equations

Let an overbar and a prime denote the basic state and

perturbation, respectively. Linearizing the equation of

state and the definition of u applied to the perturbation,

we obtain

r9

�r
5

1

c2
s

p9

�r
�

u9

�u
, (6.1)

718 M O N T H L Y W E A T H E R R E V I E W VOLUME 137



where cs is the speed of sound given by c2
s [ gRT. Also,

we obtain p9 ’ kð�p/�pÞp9 from the definition of p. Then,

using the equation of state applied to the basic state

written in the form �p 5 �r R �p �u , we can show

cp
�up9 ’

p9

�r
. (6.2)

Linearizing the horizontal and vertical components of

the momentum equation [(2.1)] with the ‘‘traditional

approximation’’ (Eckart 1960; Phillips 1966, 1968) and

using (6.2), we obtain

›V9H

›t
5 � f k 3 V9H � $H

p9

�r

� �
(6.3)

and

d
›w9

›t
5 �

›

›z

p9

�r

� �
1

p9

�r

d ln �u

dz
1

u9

�u
g. (6.4)

Here d 5 1 and d 5 0 represent the nonhydrostatic

and quasi-hydrostatic systems, respectively. The an-

elastic systems proposed by Ogura and Phillips (1962)

and Lipps and Hemler (1982) drop the double-

underlined term. Linearization of (2.8) without heating

gives

›

›t

u9

�u

� �
5 �w9

d ln �u

dz
. (6.5)

On the other hand, linearization of (1.1) and the use of

(6.1) and (6.5) give

1

c2
s

›

›t

p9

�r

� �
5 �

1

�r
$H � ð�r V9HÞ1

›

›z
ð�rw9Þ

� �
� w9

d ln �u

dz
.

(6.6)

The anelastic continuity equation neglects both the

single- and double-underlined terms while the pseudo-

incompressible equation (Durran 1989) neglects only

the single-underlined term.

b. Normal-mode analysis on an f plane

In the rest of this section, we analyze the dispersion

relation and vertical structure of the normal modes for

various systems of equations using a Cartesian hori-

zontal coordinate (x, y), first on an f plane without the

quasigeostrophic approximation and then on a midlat-

itude b plane with the quasigeostrophic approximation.

For simplicity, we assume that the motion is uniform in

y as in Rossby et al. (1939). An isothermal resting at-

mosphere is used as the basic state.

Our analysis on an f plane is almost parallel to that

performed by Davies et al. (2003) except that we use a

different transformation of the dependent variables.

From (6.3) with p0 5 p9qs 1 dp9, we can derive the di-

vergence and vorticity equations as

›

›t

›u9

›x
5 f

›y9

›x
�

›2

›x2

p9qs

�r
1

dp9

�r

� �
(6.7)

and

›

›t

›y9

›x
5 �f

›u9

›x
, (6.8)

where u and y are the x and y components of velocity,

respectively, and f is a constant Coriolis parameter.

Using d ln �u/dz 5 k/H in (6.4), where H is the scale

height, the vertical component of the momentum

equation may be written as

d
›w9

›t
5 �

›

›z
�

k

H

 !
p9

�r

� �
1 b9, (6.9)

where b9 [ gu9/�u. From the definition of pqs, we have

›

›z
�

k

H

 !
p9qs

�r

� �
5 b9. (6.10)

Then (6.9) gives

d
›w9

›t
5 �

›

›z
�

k

H

 !
dp9

�r

� �
. (6.11)

Equations (6.5) and (6.6), on the other hand, give

›

›t
b9 5 � g

k

H
w9 (6.12)

and

1

c2
s

›

›t

p9qs

�r
1 e

dp9

�r

 !
5

w9

H
�

›u9

›x
1

›

›z
1

k

H

 !
w9

" #
.

(6.13)

Equations (6.7)–(6.8) and (6.10)–(6.13) form a closed

system for the dependent variables u9, y9, w9, p9qs/r, b9,

and dp9/�r. Recall the following definitions:

d Fully compressible: all underlined terms are retained

with e 5 1, d 5 1;
d Unified: all underlined terms are retained with e 5 0,

d 5 1;
d Pseudo-incompressible: terms with single underline

are omitted with d 5 1;
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d Anelastic (Lipps–Hemler): terms with single and

double underlines are omitted with d 5 1;
d Quasi-hydrostatic: all underlined terms are retained

with d 5 0.

From (6.11), (6.10), and (6.13), it is obvious that the

Lipps–Hemler anelastic model applied to an isother-

mal atmosphere requires k (;0.286) ,, 1 at least

for deep motions. As Bannon (1995) pointed out, this

condition is also required for the approximation

u9/u0 ’ T9/T0 used in their model. This requirement

suggests that applications of the anelastic system to

the stratosphere need some caution. The pseudo-

incompressible model of Durran (1989) is free of this

requirement.

We now consider normal modes governed by (6.7)–

(6.8) and (6.10)–(6.13) that have the following form:

�r 1/2ðu9, y9, w9, b9Þ5 Re[ðû, ŷ, ŵ, b̂Þe i kx1mz�ntð Þ] and

�r�1/2ðp9qs, dp9Þ5 Re[ð p̂qs, dp̂Þe i kx1mz�ntð Þ],

(6.14)

where k and m are the horizontal and vertical wave-

numbers, respectively, and n is the frequency, We con-

sider barotropic and baroclinic modes separately.

1) BAROTROPIC MODE

By ‘‘barotropic mode,’’ we mean nonbuoyant mo-

tions (b0 5 0). Equation (6.12) shows that such motions

are horizontal (w0 5 0). Then (6.11) and (6.10) show

that both dp0/�r and p0qs/�r vary exponentially in height.

Thus, if we assume that these variables are zero at the

model top, they are zero at all height. This is not ac-

ceptable at least for p0qs/�r as we discussed in section 2.

Using (6.14) in (6.7), (6.8) and (6.13) with w0 5 0, we

find the following dispersion relation:

k2n3 � k2
ðf 2

0 1 k2c2
s Þn 5 0. (6.15)

A solution of (6.15) is n 5 0, representing the stationary

barotropic geostrophic motion.

(i) The pseudo-incompressible and anelastic
systems

These systems neglect the underlined term in (6.15).

Consequently, n 5 0 is the only solution of (6.15).

(ii) The fully compressible, unified, and
quasi-hydrostatic systems

The assumption of e 5 0 for the unified system and

that of d 5 0 for the quasi-hydrostatic system do not

influence the dispersion relation (6.15). Thus, the fully

compressible, unified and quasi-hydrostatic systems

have identical solutions given by

n2 5 f 2 1 k2c2
s , (6.16)

which gives the frequency of the Lamb wave modified

by the Coriolis force.

2) BAROCLINIC MODES

Using the transformation of the dependent variables

given by (6.14), we obtain the dispersion relation for

baroclinic modes. As in the case of barotropic modes,

n 5 0 is a solution, representing the stationary bar-

oclinic geostrophic motion. For other modes, the dis-

persion relation is given by

edkn4 � [N2k 1 dk3c2
s 1 edkf 2 1 c2

s kðm2 1 m2Þ]n2

1 [N2kf 2 1 k3c2
s N2 1 c2

s kf 2
ðm2 1 m2Þ] 5 0, (6.17)

where

m [
1

H

1

2
� k

� �
. (6.18)

For solutions satisfying wS 5 wT 5 0 at the upper and

lower boundaries, the vertical wavenumber of the so-

lutions is constrained to the form given by

m 5
pn

zT
, n 5 1, 2, 3, . . . , (6.19)

where n is the integer vertical wavenumber and zT is the

height of the upper boundary as previously defined. In

(6.19), we assume that zS 5 0 at the lower boundary.

Figure 1 shows frequencies of these modes (solid

lines) as well as that of the Lamb wave (dashed line) as

functions of the horizontal wavenumber for selected

values of n for (Fig. 1a) the fully compressible, (Fig. 1b)

anelastic, (Fig. 1c) pseudo-incompressible, (Fig. 1d)

unified, and (Fig. 1e) quasi-hydrostatic systems. Only

positive frequencies are shown. The fully compressible

system (Fig. 1a) yields three distinct modes, one rep-

resenting vertically propagating sound waves, one rep-

resenting inertia-gravity waves and one representing the

Lamb wave. Vertically propagating sound waves are

filtered by all the systems (Figs. 1b–e). The unified,

pseudo-incompressible, and anelastic systems do the

filtering without significant distortions in the dispersion

of the inertia–gravity mode while the quasi-hydrostatic

system seriously distorts the dispersion of that mode

with large horizontal wavenumbers.

It is evident in Fig. 1 that the fully compressible,

unified, pseudo-incompressible, and anelastic systems

produce virtually identical dispersion relation for the

720 M O N T H L Y W E A T H E R R E V I E W VOLUME 137



inertia–gravity mode. The n 5 1 case of the pseudo-

incompressible system is, however, worse than the an-

elastic system. This does not mean, however, that the

solutions for u9, y9, w9, b9, p9qs, and dp9 of the anelastic

system are better than those of the pseudo-incompressible

system. To show this, we define the vertical phase angle

u by

u [ arctan
pn

mzT

� �
. (6.20)

In the definition of m given by (6.18), all terms are kept

in the fully compressible, unified, pseudo-incompress-

ible, and quasi-hydrostatic systems, while the term with

double underline is omitted in the anelastic system.

Consequently, the vertical phase angle is different for

the anelastic system from the others. The difference is

maximum (approximately 308) for n 5 1 and decreases

with increasing n. This is due to the failure of the an-

elastic system in correctly recognizing the effect of static

stability.

c. Normal-mode analysis on a midlatitude b plane
with the quasigeostrophic approximation

The normal-mode analysis presented in section 6b is

extended to a midlatitude b plane. Since our focus here is

on the Rossby wave, we use the quasigeostrophic (and

quasi-hydrostatic) approximations for clarity of the results.

In this analysis, (6.7), (6.8), and (6.13) are replaced by

f 0

›y9

›x
5

›2

›x2

p9qs

�r
, (6.21)

›

›t

›y9

›x
5 �by9� f 0

›u9

›x
, (6.22)

and

FIG. 1. Frequencies of normal modes on an f plane as functions of horizontal wavenumber for (a) the fully compressible, (b) anelastic, (c)

pseudo-incompressible, (d) unified, and (e) quasi-hydrostatic systems. See the text for more details.
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1

c2
s

›

›t

p9qs

�r
5

w9

H
�

›u0

›x
1

›

›z
1

k

H

 !
w9

" #
. (6.23)

1) BAROTROPIC MODE

(i) The pseudo-incompressible and anelastic
systems

These systems neglect the underlined term in (6.13),

which gives u0 5 0 for horizontal motion. The disper-

sion relation then becomes

n 5�
b

k
. (6.24)

This frequency gives the westward retrogression speed

of the prototype Rossby wave, which becomes infinite

as k/0.

(ii) The fully compressible, unified, and quasi-
hydrostatic systems

All of these systems have the dispersion relation given

by

n 5 �
kb

k2 1 ðf 0/csÞ
2

. (6.25)

In a sharp contrast to (6.24), (6.25) gives n! 0 as

k! 0.

2) BAROCLINIC MODES

For these modes, the dispersion relation is given by

n 5�
kb

k2 1 f 2
0

1

c2
s

1
1

kgH
H2ðm2 1 m2Þ

" # . (6.26)

With the upper boundary at a height comparable to the

scale height H, the second term in the brackets dominates

over the first term so that, unlike the barotropic mode, the

differences of the anelastic/pseudo-incompressible sys-

tems from the others are relatively minor.

Figure 2 shows frequencies of the barotropic (dashed

lines) and baroclinic (solid lines) Rossby modes for the

fully compressible, unified, and quasi-hydrostatic system

(Fig. 2a), the pseudo-incompressible system (Fig. 2b), and

the anelastic system (Fig. 2c). The overall performance of

the unified, pseudo-incompressible, anelastic, and quasi-

hydrostatic systems relative to the fully compressible

system is summarized in Table 1. In the table, ‘‘not

modified’’ and ‘‘modified’’ are relative to the fully com-

pressible system. In summary, as far as the normal modes

are concerned, the unified system maintains the charac-

teristics of the fully compressible system almost exactly

except that it filters vertically propagating sound waves.

7. Summary and conclusions

This paper presents a system of equations that can

cover a wide range of horizontal scales from turbulence

to planetary waves while filtering vertically propagating

sound waves of all scales. The continuity equation of the

system includes the time derivative of quasi-hydrostatic

density, which can be predicted using the thermody-

namic equation and the tendency equation for the

quasi-hydrostatic surface pressure. The system can

therefore be viewed as a generalization of the anelastic

system while it is fully compressible for quasi-hydrostatic

motions. The system can also be viewed as a generali-

zation of the quasi-hydrostatic (usually simply called

‘‘hydrostatic’’) system since no approximation is intro-

duced into the momentum equation. In this way, the

system maintains close ties with both the primitive

equation models for large scales and the anelastic (and

Boussinesq) models for small scales. As in the anelastic

system, the spatially varying part of the nonhydrostatic

Exner function is determined through solving an elliptic

equation. A computational procedure that can be followed

in a time-discrete model is presented. The paper also

presents the unified system with the quasi-hydrostatic

pressure as the vertical coordinate. Appendix B shows

FIG. 2. Frequencies of normal modes on a midlatitude b plane with the quasigeostrophic approximation as functions of horizontal

wavenumber for (a) the fully compressible, unified, and quasi-hydrostatic, (b) pseudo-incompressible, and (c) anelastic systems. See the

text for more details.
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that the unified system can also use the vector vorticity

equation instead of the momentum equation.

Through normal-mode analysis, it is shown that the

unified system reduces the westward retrogression

speed of the barotropic Rossby wave through the in-

clusion of horizontal divergence due to compressibility.

It also removes the large systematic error of the an-

elastic system in the vertical structure. While vertically

propagating sound waves are filtered, the Lamb wave is

included in the unified system as in the usual primitive

equation models. Because of the close analogy between

the Lamb wave and shallow-water gravity waves, we

hope that the multipoint explicit differencing (MED)

technique originally developed for shallow-water grav-

ity waves by Konor and Arakawa (2007) will be effec-

tive in stabilizing the Lamb wave with high Courant

numbers.

It is shown that a properly defined energy can be

conserved in this system with no heating and friction.

Whether the energy is conserved or not, however, de-

pends on how we determine the spatially constant part

of the Exner function, which does not influence the

dynamics of the system. Conservation also depends on

the definition of nonhydrostatic temperature, which

appears only in the right-hand side of (2.8) representing

the diabatic effect. Thus energy conservation in this

system is a matter of interpretation as far as adiabatic

cases are concerned.

In conclusion, the unified system seems to be a

promising system as the dynamics core of global cloud-

resolving models although its computational efficiency

relative to that of fully compressible models is yet to be

assessed.
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APPENDIX A

Derivation of the Energy Equation

Rewriting the definition of u using the equation of

state, we obtain

ln u 5 ð1� kÞ ln p� ln r 1 const, (A.1)
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while from (2.6), which is a consequence of the defini-

tion of the quasi-hydrostatic state, we obtain

ln u 5 ð1� kÞ ln pqs � ln rqs 1 const. (A.2)

From the definition of Tqs given by (3.7) and (A.2), we

can also express ln u as

ln u [ ð1� kÞ ln Tqs � k ln rqs 1 const. (A.3)

From (A.2) and (A.3) with the adiabatic thermody-

namic equation D ln u/Dt 5 0, we may write

D

Dt
ln rqs 5 ð1� kÞ

D

Dt
ln pqs (A.4a)

5
1� k

k

D

Dt
ln Tqs. (A.4b)

Subtracting (A.2) from (A.1) and using (1.6) and (2.7),

on the other hand, we obtain

dr

rqs

’ ð1� kÞ
dp

pqs

. (A.5)

We also have

dp

pqs
’ k

dp

pqs

. (A.6)

Linearizing the pressure gradient force �$p/r using

(1.6), the momentum equation without the friction force

may be written as

DV

Dt
5 �2V 3 V�

1

rqs

$p�
dr

rqs

$pqs

 !
� kg. (A.7)

Multiplying (A.7) by rqsV, using w 5 Dz/Dt, and

substituting $ �Vobtained from the continuity equation

in (1.5) rewritten in the following form:

D

Dt
ln rqs 1 $ �V 5 0, (A.8)

we obtain

rqs

D

Dt

1

2
V2 1 gz

� �
5 �$ � ð pVÞ

� p
D ln rqs

Dt
1

dr

rqs

V �$pqs. (A.9)

Using p 5 pqs 1 dp, (A.4b) for �pqsD ln rqs/Dt, (A.4a)

for �dpD ln rqs/Dt, and then (A.5), (A.9) may be re-

written as

rqs

DEqs

Dt
5 �= � ðpVÞ � ð1� kÞ

dp

pqs

›pqs

›t
, (A.10)

where Eqs is the quasi-hydrostatic energy defined by

Eqs [
1

2
V2 1 gz 1 cyTqs. (A.11)

Using (3.8) and (A.6), the last term in (A.10) may be

rewritten as

�ð1� kÞ
dp

pqs

›pqs

›t
[ �

›

›t
dp 1 pqs

›

›t

dp

pqs

 !
1 k

dp

pqs

›pqs

›t

5 �
›

›t
ðcprqsdTÞ1

1

k
pqs

›

›t

dp

pqs

� �

1
dp

pqs

›pqs

›t

[ �
›

›t
ðcprqsdTÞ1

1

k

pqs

pqs

›

› t
dp

�
dp

pqs

1

k

pqs

pqs

›

› t
pqs �

›pqs

›t

� �
.

(A.12)

From (2.4), the sum of the terms in the last pair of pa-

rentheses vanishes. Using this result and the Eulerian

form of (A.10), we finally obtain

›

› t
rqsðEqs 1 cpdTqsÞ1 $ � [VðrqsEqs 1 pÞ]

5
1

k

pqs

pqs

›

› t
dp. (A.13)

This is (3.5) in the text.

APPENDIX B

Computational Procedure with the Vector Vorticity
Equation

In the cloud-resolving model developed by Jung and

Arakawa (2008), the horizontal component of the three-

dimensional vorticity equation is used instead of the

momentum equation. From the curl of (2.1), we can

derive the vector vorticity equation as

Dv

Dt
5 �v $ �V 1 ðv � $ÞV 1 cp$ðpqs 1 dpÞ

3 $u 1 $ 3 F, (B.1)

where v is the three-dimensional vorticity, $ 3 V. The

horizontal component of (B.1) is

DvH

Dt
5 �vH$ �V 1 ðv � $ÞVH 1 cpk

3 $Hu
›

›z
�

›u

›z
$H

� �
ðpqs 1 dpÞ1 ð$ 3 FÞH .

(B.2)

724 M O N T H L Y W E A T H E R R E V I E W VOLUME 137



In the Jung–Arakawa model, the vertical component of

v is diagnosed from its horizontal component using the

identity

$ �v 5 =H �vH 1
›vz

›z
[ 0. (B.3)

To derive equations that relate w to the horizontal

components of velocity or vorticity, we first rewrite the

continuity equation in (2.13) as

1

rqs

›

›z
ðrqswÞ5 �$ �VH �

D

Dt

� �
H

ln rqs, (B.4)

where ðD/DtÞH [ ›/›t 1 VH � $H . Differentiating (B.4)

with respect to z, adding $2
H w to both sides, and using

$H 3 vH [ k$�Hð›VH /›z� $H
wÞ, we obtain

=2
H w 1

›

›z

1

rqs

›

›z
ðrqswÞ

" #
5 �k � $H 3 vH

�
›

›z

D

Dt

� �
H

ln rqs.

(B.5)

When the last term is dropped, (B.5) becomes a diag-

nostic equation that relates w to vH . This diagnostic

equation is used in the anelastic model presented by

Jung and Arakawa (2008), which replaces the elliptic

equation for the Exner function. In the unified system

based on the vector vorticity equation, (B.5) is used to

update w from the predicted vH and rqs. Using the

backward scheme to express the last term as in section 4,

(B.5) may be discretized as

=2
H wðn11Þ1

›

›z

1

r

›

›z
[rwðn11Þ]

� �
5 �k � $H 3 v

ðn11Þ
H

�
›

›z

ln rðn11Þ
qs
� ln rðnÞ

qs

Dt
1 ðVH � $H ln rqsÞ

ðnÞ

" #
.

(B.6)

Using already known wðn11Þ and rðn11Þ in the continuity

equation in (4.5), we can diagnose $�Vðn11Þ
H at an arbi-

trary level (e.g., at the model top). Then, the horizontal

divergence equation applied to the model top deter-

mines ðdpÞ
ðn11Þ
T except for a horizontally constant part

through a Poisson equation. A downward integration of

the vertical component of the momentum equation in

(3.3) from this temporary value of ðdpÞ
ðn11Þ
T determines

ðdpÞðn11Þ at all height except for a spatially constant part.

We can then follow (3.11) and a time-discrete version of

(3.12) to obtain the final value of ðdpÞðn11Þ.
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