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Atmosphere dynamics of our planet is quite well described by traditional primitive equations based on the so-called shallow atmosphere approximation. However, to model planetary atmospheres, we can not make the shallow approximation
anymore because of the low planet radius (such as Titan) or the depth of their atmospheres (such as Jupiter or Saturne). The full Coriolis force needs then to be taken into account, in addition to all metric terms [3]. Non-traditional terms have
little-known dynamical effects [8] and are rarely integrated into general circulation dynamical cores [4].

The goal of the present work is to incorporate the quasi-hydrostatic equations into a primitive-equation dynamical core while preserving the discrete conservation of potential vorticity [1, 2]. For this we derive the vector-invariant form of the
equations in general, time-dependant curvilinear coordinates. This suggests to use absolute angular momentum instead of relative velocity as a prognostic variable. Furthermore the modification of the hydrostatic balance requires a mass-based
vertical coordinate [5]. This formulation leads to a straightforward generalization of Sadourny’s discretization [1], reusing most of the primitive-equation dynamical core.

Motivations

White and Bromley [3] pointed out the fact that the traditional equa-
tions are dynamically consistent when the following hypothesis are both
made : the shallow atmosphere approximation (r → R) AND the cosφ
Coriolis force can be neglected.
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That approximation is relevant to investigate the climate on Earth
because of its low ratio between atmosphere thickness and Earth’s
radius, but it’s not for Titan, the largest moon of Saturn (FIG. 1).

Earth Titan
Ratio ∼ 1.5% ∼ 25%

g variability ∼ 2.8% ∼ 53.4%

FIG. 1 Data from NASA website

The last line corresponds to variation of equatorial gravity between the surface and the top of

the mesosphere.

The present work is based around the general circulation model
(GCM) LMD-Z [6] where the traditional primitive equations are
discretized on a longitude/latitude horizontal grid and with a pressure-
based coordinate. The spatial discretization is derived from a finite
difference scheme of the vector-invariant form of the primitive equa-
tions.

Then, the potential vorticity is exactly conserved [1, 2] and it’s consid-
ered as an essential property of a robust GCM. That’s why we gener-
alize Sadourny’s scheme [1, 2] to derive the non traditional 3D quasi-
hydrostatic equations to get an entrosphy-conserving deep atmosphere
dynamical core.

Part 1: Derivation from vector-invariant form in
general, time-dependant curvilinear coordinates

In a general, time-dependant, curvilinear coordinates system
(a1, a2, a3, t) → x(a1, a2, a3, t), the 3D quasi-hydrostatic momentum
equations are equivalent to the following vector-invariant form :

∂tṽ + (∇× ṽ)× (û− ŵ) +∇(K + Φ− v.w) +
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∇p = 0
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and ũi = ei · u and ûi = fi.u

Jacobian J = ei · fi

On the sphere : λ-longitude/ φ-latitude horizontal grid
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FIG. 2 Curvilinear coordinates FIG. 3 Vertical variation
of angular momentum

⊲ Spherical geometry
Mapping : (λ, φ, r, t) → (x(λ), y(φ), η(λ, φ, r), t)
cu = r cosφ∂xλ, cv = r∂yφ and J = r2∂xλ∂yφ∂ηr cosφ

⊲The absolute horizontal velocity covariant part is the
ABSOLUTE ANGULAR MOMENTUM :

ṽ1 = cu(u + Ωr cosφ) = mz and ṽ2 = cvv = mλ

With that formulation, the metric terms - which are time-dependent
- are incorporate in the covariant velocity component. By taking into
account these terms we actually consider vertical variation of angular
momentum (FIG. 3).

⊲The relative horizontal velocity contravariant part is
the RELATIVE ANGULAR VELOCITY :
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Then the horizontal momentum equations are equivalent to :
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mass per element m = ρcucv∂ηr

horizontal mass fluxes U = mû1, V = mû2
vertical mass flux W = m(û3 − ŵ3)

conserved potential vorticity q =
∂yṽ2 − ∂xṽ1

m

Part 2 : Modification of hydrostatic balance

In the shallow case, pressure p at a given altitude is the weight per
unit area of the hydrostatic atmosphere column above while for a deep
atmosphere, because of the additional lateral forces, it’s not (FIG. 4).
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FIG. 4 Surface pressure for deep vs shallow case

In the deep case, because of the spherical geometry and the modifi-
cation of hydrostatic balance, we can’t use a pressure-based vertical
coordinate anymore. Wood and Stanisforth [4] used a mass-based

coordinate M =
∫ top
η ρJdη′ =

∫ top
η mdη′.
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The quasi-hydrostatic equation is :
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The previous equations are coupled by density ρ which is pressure
dependent and they have to be solved simultaneously by an iteration
processing. The pressure r is integrated from the top (p = 0) to the
bottom while the vertical position r is integrated from the bottom
(r = R) to the top of the atmosphere.

Part 3 : Horizontal discretization

We based the vertical discretization on a mass coordinate M (η) which
is processed as the pressure p on the interface of each vertical layer.
Other dynamical quantities are positioned at the mid-layers. The
horizontal mesh is a longitude/latitude C-grid (FIG. 5) so that Exner
function Π, geopotential Φ, and potential temperature are processed
on the primal mesh and velocity and potential vorticity on the dual
mesh.
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FIG. 5 Horizontal C-grid and vertical discretizations

Algorithm

⊲ Initialization

– vertical discretization : a(η), b(η),

– geometry : cu = rδxλ, cv = r cosφδyφ,

– prognostic variables : ṽ1 = cu(u + Ω cosφr), ṽ2 = cvv, mθ and
Ms.

⊲Mass coordinate and diagnostic of p and r : iterative
resolution
M = a + bMs

m = δkM
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⊲Diagnostic for W , Π, Φ, K, Z

δtMs = −
∑

k(δxUk + δyVk)
δkW = −δxUk − δyVk − δkbδtMs

Φk = grk

δkΠ =
κΠkδkp

pk

Zk =
δxṽ2 − δyṽ1

mk

⊲Prognostic for mθ, ṽ1, ṽ2, Ms

δt(mkθk) = −δx(Ukθk)− δy(V θk)− δk(Wθ)

δtṽ1 = −
Wk

mk
δkṽ1 + ZkVk − δx(Φk +Kk)− θkδxΠ

δtṽ2 = −
Wk

mk
δkṽ2 − ZkUk − δy(Φk +Kk)− θkδyΠ

Conclusions and future work

We derived the vector-invariant form of the non-traditional (deep)
primitive equations which incorporate the metric terms and the whole
Coriolis force into the prognostic variables. We got preliminary re-
sults obtained on a prototype implementation of the method into the
GCM LMD-Z and performed baroclinic test case [3] with no physics
and on the Earth (no fundamental differences with the shallow case as
expected) but the work is still under way to adapt the GCM for deep
atmospheres.
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