The “Practitioners Dilemma”

after Laura Kaatz, Denver Water
Need for a ClimateTranslator
Need for a Climate Translator

- **Data**: access, use (format, index, resolution)
 Which data to use? How to read it? Where does it come from?

- **Evaluation**: Quality Control
 Inter-comparison, data content info
 How good is data? Production assumptions? What are the uncertainties?

- **Translation of Scientific Knowledge** for exploration of impacts of change, guidance of use
 What does it mean? What is likely, what possible? Change in context?

- **Community of Practice**
 Collaboratively develops data requirements, handling of scenarios
Need for a Climate Translator

- **Data**: access, use (format, index, resolution)
 Which data to use? How to read it? Where does it come from?

- **Evaluation**: Quality Control
 Inter-comparison, data content info
 How good is data? Production assumptions? What are the uncertainties?

- **Translation of Scientific Knowledge** for exploration of impacts of change, guidance of use
 What does it mean? What is likely, what possible? Change in context?

- **Community of Practice**
 Collaboratively develops data requirements, handling of scenarios
Ideal Climate Science Applications

80% Data handling
15% Analysis, Exploration, Uncertainty
5% Dissemination, Visualization

To be relevant, need to establish the right balance!
To be relevant, need to establish the right balance!
NCPP-Evaluation “Conveyor”
Components of a ClimateTranslator

- data access: based on services provided by UNIDATA, NOAA-NESII, DataCenters (NCDC, USGS, PCMDI, NCAR, U-Idaho, U-Del., U-Wisc., ...): (workshop development: direct staging on NCAR Yellowstone)

- standardized indices for applications (CLIMDEX, BIOCLIM, NCA, ...)

- Evaluation I: standardized characterization (protocols and metrics)

- Evaluation II: standardized intercomparison options

- Foundation: extensible capabilities, documented standards
Plan of Evaluation Suite Processing

- Products: netCDF data, XML-Metadata, PNG-Visualization
- Open Source Software (ncl-repository), tested. (availability via GitHub: planned)
- Open access through EarthSystem CoG
Silent Stars of the QED v1.0

Jonathan Vigh
NCAR

But also: DataCenters, Coord-Experiment Designers and their (silent) Stars!

Luca Cinquini
JPL / NOAA

Earth System
ClimateTranslator by the Numbers

- 39 datasets (pr, tas, tasmin, tasmax, dtr)
- 17 variables and indices
- 80,000+ visualizations
- Gridded observations, GCMs, dynamical and statistical downscaled data
- Cleaned 30-yr present data: ~1TB
- Intermediate data: 2.5TB
- Output data (eval/comp): 0.3TB
- Time from ingestion to plots: 2-10h
Data ID?
Full ClimateTranslator Vision

Proposed ClimateTranslator System Model

- Other Portals and Collaboration Environments
- Building Block 3: ClimateTranslator Portal
- Building Block 2: ClimateTranslator Workflow Framework
- Building Block 1: ClimateTranslator Derivatives Exchange

- Community Brokers, Standards, & Protocols
- Decentralized Data, Derivatives & Metadata Storage

GUI

Translation Guidance

Evaluation Comparison

Data Service

- Translational-Level Derivatives Information
- Enhanced Derivatives with Workflow Provenance
- Basic Derivatives with Provenance
Emerging Themes for Working Groups

1) “LinkedIn” for DATA / CODE: Topics in crowd-sourced data collection and workflow transparency: requires strict standards (NOAA-NCDC, DataONE, NCAR ...)

2) BETTER DATA: Observational data and downscaling tools to improve existing data products, and expand beyond precipitation and temperature variables. Stations, gridded data, bias correction? Multi-variate coherent data products?

3) DATA SERVICES: Cloud-based solutions for accessing, sub-setting, processing, and downloading resulting climate data products. Handling of large observational and model output data without having to deal with size, formats, ...

4) INSIGHTFUL COMPARISON: Tools for comparing high resolution climate model output with observational data for assessing applicability for impact studies

5) FACILITATING (study of) UNCERTAINTY: Approaches for expressing and applying uncertainty in gridded data products for use in subsequent impact studies. Sampling, processing uncertainty, and tools to handle output from ensembles and scenario generators for multi-model outputs

6) TUTORIAL: How to make sophisticated modeling tools, e.g., Bayesian Hierarchical Models accessible to application studies

7) RESOLUTION: Assess and document trades-offs between resolution and ensemble size for impact studies
Workshop Evaluation Objectives

- how to improve data access? which level of processed data?
- what additional variables, indices, metrics? Prioritization? but what is an observational reference?
- what pre-computed visualizations are useful? when only data?
- is this infrastructure useful to build guidance? what can be added/changed to support your communities?