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Description of the Problem

To interpolate data from one grid(mesh) to another, where each
is distributed, independently, in parallel.
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Description of the Problem

To interpolate data from one grid(mesh) to another, where each
is distributed, independently, in parallel.

Within ESMF, how to calculate weights in an efficient/load
balanced manner?

How to perform the interpolation in an efficient/load balanced
manner?
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Bounding box and load imbalance problem

In the most straightforward approach, bounding boxes for each
processor’s grid are shared amongst processors.
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These bounding boxes depend on a fixed coordinate system
(which the two grids must negotiate), and optimal performance
requires the parallel decomposition be roughly aligned with this
coordinate system.
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Bounding box and load imbalance problem

In the most straightforward approach, bounding boxes for each
processor’s grid are shared amongst processors.

A destination cell (or point) locates the source processor with a
cell(s) that contains it.

Destination points are shipped to the source grid decomposition
for the search and weight calculation.

These bounding boxes depend on a fixed coordinate system
(which the two grids must negotiate), and optimal performance
requires the parallel decomposition be roughly aligned with this
coordinate system.

This condition is rarely satisfied.
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Load in balance problem

The interpolation problem is by nature geometric, but the grid
decomposition is not necessary so
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Load in balance problem

The interpolation problem is by nature geometric, but the grid
decomposition is not necessary so

In the worst case, the entire source mesh may be shipped to
one processor! This standard approach lacks robustness.
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A Geometric solution

We construct a new partition for each mesh such that the
portions of each mesh on a given processor are geometrically
collocated!
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A Geometric solution

We construct a new partition for each mesh such that the
portions of each mesh on a given processor are geometrically
collocated!

Also, the union of meshes is load balanced!
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Exchange grids, anyone?

This new partition could easily be used to compute the
exchange grid fractional areas, in parallel.

Just choose your favorite serial algorithm for calculating
fractional cell areas.
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RCB to the rescue

The Recursive Coordinate Bisection algorithm is a parallel
algorithm for partitioning a set of geometric entities (possibly
with weights). The package Zoltan provides this.
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RCB to the rescue

The Recursive Coordinate Bisection algorithm is a parallel
algorithm for partitioning a set of geometric entities (possibly
with weights). The package Zoltan provides this.

A parallel median-finding kernel is at the core of the algorithm.
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Intersecting grids

This algorithm is only applied to the geometric intersection of the
meshes.
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Non-regular decompositions

Representing the meshes in the Rendezvous decomposition is a
challenge since, in general, the meshes will not have a regular
decomposition in this space.
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Non-regular decompositions

Representing the meshes in the Rendezvous decomposition is a
challenge since, in general, the meshes will not have a regular
decomposition in this space.

For the exchange grid calculation or for two way regridding, we
need a representation for such decompositions.
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Local search

For the local search algorithm we use either the Swegle method,
or a more modern octree method.
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Local search

For the local search algorithm we use either the Swegle method,
or a more modern octree method.

We calculate the weights using whatever local scheme is
appropriate (bi-linear or conservative for finite difference codes,
or by master element interpolation rules for finite element.
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Load balancing the regrid

Once we form a matrix on the rendezvous grid, we have three
choices for storing and applying the matrix.
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Load balancing the regrid

Once we form a matrix on the rendezvous grid, we have three
choices for storing and applying the matrix.

1) Send the matrix to a row decomposition (destination
owned).

2) Send the matrix to a column decomposition (source owned).

3) Keep the matrix on the rendezvous decomposition.
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Load imbalance problem

Only the rendezvous decomposition guarantees a load balance
for the matrix application and storage.

Both the row and column decompositions may swamp a
processor with incoming communication and memory
requirements.
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The rendezvous matrix application

The interpolation forms a commutative diagram
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Where A and B are the mesh migration communication spec’s
and C is the local interpolation operator. The subscripts s,d ,R
are the source,destination and rendezvous decompositions. We
have I = B⊤ ◦ C ◦ A.
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The rendezvous matrix application

The interpolation forms a commutative diagram

SrcR

C
−−−−→ DstR

A

x





B

x





Srcs

I
−−−−→ Dstd

Where A and B are the mesh migration communication spec’s
and C is the local interpolation operator. The subscripts s,d ,R
are the source,destination and rendezvous decompositions. We
have I = B⊤ ◦ C ◦ A.

We ship fields and results using the mesh migration comm
spec’s A and B⊤.
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Results

We interpolate from a 3d volume to a 2d manifold (bilinear). The
volume contains 4M cells, the surface contains 1.9M cells. Only
984K source cells intersect the destination bounding box. Using

UCAR’s lightning cluster. 128 nodes, each with two 2.2GHz
AMD Opteron processors, 4GB memory shared. 128-port
Myrinet switch through single-port Myrinet PCI adaptor.
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Results, timing

Timings:
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Example, analytic wind field

We interpolate an analytic wind field from a standard lat/lon
earth grid to the POP ocean grid.

We use both bilinear and a patch-interpolation method.
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Patch interpolation

The patch method averages the results of least squares
polynomial fit around each node.

The value at a point within an element is a weighted average of
the values of each patch.

David Neckels, NCAR – p.17/22



Improved derivatives

The patch method results in better approximation to derivatives,
such as curl when compared to bilinear interpolation.
Example, analytic wind stress:
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Improved derivatives

The patch method results in better approximation to derivatives,
such as curl when compared to bilinear interpolation.
Example, analytic wind stress:

Mesh scales
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Improved derivatives

The patch method results in better approximation to derivatives,
such as curl when compared to bilinear interpolation.
Example, analytic wind stress:

Exact curl
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Improved derivatives

The patch method results in better approximation to derivatives,
such as curl when compared to bilinear interpolation.
Example, analytic wind stress:

Curl of bilinear interpolant
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Improved derivatives

The patch method results in better approximation to derivatives,
such as curl when compared to bilinear interpolation.
Example, analytic wind stress:

Curl of patch recovered interpolant
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Rendezvous grid

The rendezvous grid decomposition for these meshes
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Patch vs Bilinear gradients

The patch method produces much more accurate derivatives,
curl is shown here.
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Patch vs Bilinear gradients

The patch method produces much more accurate derivatives,
curl is shown here.

Patch recovered Error
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Patch vs Bilinear gradients

The patch method produces much more accurate derivatives,
curl is shown here.

Bilinear Error
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Conclusions

The Rendezvous algorithm presents a straightforward and
robust method to perform parallel regridding and (with the
addition of a fractional area kernel) to compute the exchange
grid.
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Conclusions

The Rendezvous algorithm presents a straightforward and
robust method to perform parallel regridding and (with the
addition of a fractional area kernel) to compute the exchange
grid.

Due to non-regular decompositions in rendezvous space, an
unstructured mesh representation is appropriate there.

For some meshes, the matrix multiplication should be performed
in rendezvous space, to combat load imbalance.
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