

The Earth System Modeling The Earth System Modeling
Framework:Framework:

A high performance software solution for building
and coupling model components.

Seminar at the Max Planck Institute for Meteorology,
Hamburg

Gerhard Theurich, Bob Oehmke, Cecelia DeLuca
NOAA/CIRES

May 10, 2012

http://www.earthsystemmodeling.org/

Outline

● Motivation and History

● Architecture

● Regridding

● Interoperability (NUOPC)

● Wrap-Up

Motivation

In climate research and numerical weather prediction...

… increased emphasis on detailed representation of individual physical
processes; requires many teams of specialists to contribute components to
an overall modeling system.

In computing technology...

… increase in hardware and software complexity in high-performance
computing, as we shift toward the use of multi-paradigm parallel computing
architectures.

In software...

… emergence of frameworks to promote code reuse and interoperability.

● ESMF is a focused community effort to tame the complexity of models and
the computing environment.

● It leverages, unifies and extends existing software frameworks, creating
new opportunities for scientific contribution and collaboration.

History

Phase 1: 2002-2005

NASA’s Earth Science Technology Office ran a solicitation to develop an Earth System
Modeling Framework (ESMF).

A multi-agency collaboration (NASA/NSF/DOE/NOAA) won the award. The core
development team was located at NCAR.

A prototype ESMF software package (version 2r) demonstrated feasibility.

Phase 2: 2005-2010

New sponsors included Department of Defense and NOAA.

Many new applications and requirements were brought into the project, motivating a
complete redesign of framework data structures (version 3r).

Phase 3: 2010-2015

The core development team moved to NOAA/CIRES for closer alignment with federal
models.

Basic framework development has been completed with version 5r (ports, bugs,
feature requests, user support etc. still require resources).

Extensions continue: regridding, interoperability and language bindings.

The focus is on increasing adoption and creating a community of interoperable codes.

Backward Compatibility

● Starting with ESMF v5.2.0r, > 75% of the API are
marked as backward compatible.

● User code relying on these calls will compile with
future versions of ESMF (unchanged!).

● Provides a solid platform for application
development.

● Some newer interfaces are exempt (e.g. location
streams, exchange grids, …).

● Keyword enforcement (e.g., rc=localrc) for optional
arguments is an important mechanism.

● Additional optional arguments can be introduced.
● Additional methods or overloads can be introduced.

Outline

● Motivation and History

● Architecture

● Regridding

● Interoperability (NUOPC)

● Wrap-Up

Architecture – Overview I

● Base library of about 500,000 lines of source code.

● 60% in Fortran, 40% in C/C++

● Complete Fortran API:

– use ESMF

– Derived types and methods

● Limited C API:

– #include “ESMC.h”

– Structs and methods

● Emerging Python API

– import ESMP

– Classes with methods

Architecture – Overview II

● Unix/Linux and Windows (Cygwin/MinGW)
systems

● Based on MPI (bypass mode “mpiuni” as
option)

● OpenMP and Pthreads support

● I/O trough NetCDF/HDF, Xerces, or PIO

● Sockets for web services and fault-tolerance
extensions

● Highly portable: tested on > 40 different
OS/Compiler/MPI combinations every night.

● Over 170,000 lines of example, unit and system
testing code.

Architecture – Distributed
Classes

Superstructure

In
fr

as
tr

uc
tu

re

xor

ArrayBundle

VM

RouteHandle

LocalArray

State

Field

Array

DistGrid

DELayout

FieldBundle

LocStream

Grid Mesh

XGrid

GridComp/CplComp

0..*
0..*

0..*

0..*

0..*

0..*

arrayCount

0..*

0..*

0..*

0..*

0..* 0..* 0..*

0..* 0..*

0..*

0..*2

1 1

deCount

1

1

1

1

0,10,1

0..*

0..*fieldCount

0,1

0,1

0,10,1

0..*

0..*

0..*

0..*

0..* 0..*0..*
0..*

1 1

1

1

1..n
1..n

1..n

1

0..*

Architecture – Utility
Classes

Config Log

TimeMgr

Infrastructure

Architecture – Components
and States

Infrastructure

Superstructure
Run
Initialize

WriteRestart
ReadRestart

Finalize

User Code

VM

GridComp
Expo

rt:Import:State State

Architecture – The ESMF
Burrito

Im
portState

Exp
ortS

tate

Architecture – Component
Hierarchy

● Components can be arranged hierarchically, helping to organize
the structure of complex models.

● Different modeling groups may create different kinds or levels of
components.

ESMF components in
the GEOS-5
atmospheric GCM

Architecture – Component
Overhead

● Overhead of ESMF
component wrapper
around native CCSM4
component.

● For this exercise,
ESMF wrapping
required NO code
changes to the
scientific modules.

● No significant
performance overhead
(<3% is typical)

● Few code changes for
codes that are modular.

● Platform: IBM Power 575, bluefire, at
NCAR

● Versions: CCSM_4_0_0_beta42 and
ESMF_5_0_0_beta_snapshot_01

● Resolution: 1.25 degree x 0.9 degree
global with 17 vertical levls for both the
atmospheric and land model. Ocean
model resolution is 320x384x60.

Architecture – Distributed
Data I

A11 A12 A13
A21 A22 A23
A31 A32 A33
A41 A42 A43
A51 A52 A53
A61 A62 A63

A11 A12 A13
A21 A22 A23
A31 A32 A33
A41 A42 A43
A51 A52 A53
A61 A62 A63 A23 A42 A31 A41

A43 A33 A51 A32 A22

A21 A53 A61

A52 A13 A11 A62

Regular block
decomposition

Irregular block
decomposition

Regular block
decomposition

Arbitrary
decomposition

● Local memory allocations remain
indexed in 2D.

● Grid has a more restrictive irregular
block decomposition.

● Undistributed dimensions add to
allocation dimensionality.

● Local memory allocations 1D.

● Arbitrarily decomposed logically
rectangular data.

● Unstructured data.

● Undistributed dimensions add
to allocation dimensionality.

VM

Architecture – Distributed
Data II

Array/DistGrid

A11 A12 A13
A21 A22 A23
A31 A32 A33
A41 A42 A43
A51 A52 A53
A61 A62 A63

PET 0 PET 1 PET 2
processes + threads
→ virtual address spaces (VASs)
→ persistent execution threads (PETs)

10
Hardware:

→ Proc. Elements (PEs)
 → Compute units → Single System Images

DE0

2 3 4 5

OS:

DE1

DE2

DE3

DELayout

Architecture – Distributed
Data III

Field = Array + (some form of grid object)
● Grid

– Structured representation of a region.

– Logically rectangular coordinates in 1D, 2D, 3D.

● LocStream
– Locations of a set of data points.

– Any dimension, coordinates are stored as “keys”.

● Mesh

– Unstructured representation of a region.

– Nodes with 2D or 3D coordinates.

– Elements: triangles/quadrilaterals for 2D parametric space

 tetrahedrons/hexahedrons for 3D parametric space

● Grid

– 2D boundary layer between two model grids.

– Represented by a custom constructed Mesh.

Outline

● Motivation and History

● Architecture

● Regridding

● Interoperability (NUOPC)

● Wrap-Up

Regridding - Introduction

Regridding (or remapping or interpolation) is the process
of moving data from one grid to another while preserving
qualities of the original data.

● Regrid Weight Generation

– Wide range of grids: structured and unstructured,
global and regional, 2D and 3D.

– Parallel, scalable and fast.

● Sparse Matrix Multiplication

– Index space operation, independent of higher level
interpretation.

– Parallel, scalable and fast.

Regridding – Weight
Generation Features I

● Flexible
– Computes weights between a wide range of grids: structured and

unstructured, global and regional, 2D and 3D

– Options for interpolation method, pole treatment, masked points, …

● Accurate and Portable
– Spherical regridding handled in 3D to avoid pole issues

– Tested nightly on many platforms

● Parallel and Fast
– Able to compute weights in minutes which before took hours

– Able to compute weights between very large grids

● Community developed
– Supported by NASA, NOAA, DOD and NSF funding

– Well established (since 2005) community processes for prioritization,
support and review.

– Development priorities set by users through quarterly Change Review
Board (CRB) meetings

Regridding – Weight
Generation Features II

● Interpolation types
– Bilinear

– Higher order

‣ Yields better derivatives/smoother results than bilinear.

‣ Based on “patch recovery” used in finite element modeling [1][2].

– First order conservative

● Masking
– Source

– Destination

● Unmapped destination point handling
– Error

– Ignore

● Pole options for global spherical logically rectangular Grids
– Full circle average: artificial pole is average of all source points next to pole

– N-point average: artificial pole is average of n top source neighbors of dest point

– Teeth: gap at pole filled by triangles

– No pole: error if destination point lies above top row of source points

Regridding – Weight
Generation User Interfaces

● Stand alone application (offline)
– Generates a NetCDF weight file from two NetCDF grid files.

– Formats (all NetCDF): SCRIP, ESMF unstructured format, CF GridSpec
structured convention, and CF UGrid unstructured convention.

– Builds and installs with the ESMF source code distribution.

mpirun –np 32 ESMF_RegridWeightGenESMF_RegridWeightGen –s src_grid.nc –d \
dst_grid.nc –m bilinear –w weights.nc

● API calls (integrated)
– ESMF library calls directly accessible during model run.

– Interfaces available in Fortran, C and Python.

– Access weights or directly store parallel sparse matrix multiply communication.

– Can be used without other parts of ESMF (e.g. components are not needed).

call ESMF_FieldRegridStoreESMF_FieldRegridStore(srcField=src, dstField=dst, &
regridMethod=ESMF_REGRID_METHOD_BILINEAR, routehandle=rh)

call ESMF_FieldRegridESMF_FieldRegrid(srcField=src, dstField=dst, &
routehandle=rh)

Regridding – Offline
supported grids

HOMME Cubed Sphere Grid with Pentagons
Courtesy Mark Taylor of Sandia

FIM Unstructured Grid Regional Grid

● Grids with spherical (lon, lat) coordinates.

● Mix and match pairs of:
– Global 2D logically rectangular grids

– Regional 2D logically rectangular grids

– 2D unstructured meshes composed of polygons with any number of sides (triangles, quadrilaterals,
pentagons, hexag..):

‣ ESMF internally represents these as triangles and quadrilaterals

● Multi-patch grids (e.g. cubed spheres) currently supported via unstructured formats.

● Multi-patch support expected with complete GridSpec implementation.

● 3D Cartesian unstructured grids.

Regional Grid

Regridding – Integrated
supported grids

● In addition, integrated regridding supports Cartesian (x,y)
coordinates:
– Regridding between any pair of:

‣ 2D meshes composed of triangles and quadrilaterals

‣ 2D logically rectangular grids composed of a single patch

● Bilinear or conservative regridding between any pair of:
– 3D meshes composed of hexahedrons

– 3D logically rectangular grids composed of a single patch

 2D Unstructured Mesh
From www.ngdc.noaa.gov

3D Grid 3D Unstructured Mesh

Regridding – Weight
Generation Performance

● Always go through
unstructured Mesh.

● Increases flexibility.

● Small add. overhead to
bilinear interpolation.

● Greatly improves
performance over
existing conservative
methods.

● Platform: Crag XT4, jaguar at ORNL

● Version:
ESMF_5_2_0_beta_snapshot_07

● fv0.47x0.63: CAM Finite Volume
grid, 576x384

● ne60np4: 0.5 degree cubed sphere
grid with pentagons, 180x180x6

● Previous solution takes 635s
(20x) to compute
conservative weights

● Previous solution unable to
compute bilinear weights
from cubed sphere

Regridding – Weight
Generation Impacts I

● Higher order interpolation leads to reduced noise in wind stress values
– User: Community Earth System Model

– Grids: CAM atmosphere lat/lon to POP ocean displaced pole lat/lon

– Impact: ESMF patch interpolation reduced imprint of coarser resolution atmosphere grid on
ocean for interpolated wind stress values. Interpolation weights used in CCSM4 and
subsequent IPCC runs

● Better interpolation of cubed sphere (unstructured) and lat/lon ocean
– User: Community Earth System Model

– Grids: HOMME cubed sphere atmosphere to lat/lon ocean grid

– Impact: ESMF conservative regridding enabled easier integration of a high resolution
dynamical core into CAM, reduced distortion near the pole.

● Enables CLM land model to run on cubed sphere
– User: Community Earth System Model

– Grids: Land lat/lon to HOMME cubed sphere

– Impact: ESMF parallel bilinear mapping from lat/lon to HOMME cubed sphere allowed
investigation of high resolution land model to move forward for CESM.

● Better values at poles for unstructured to lat/lon remapping
– User: Community Earth System Model

– Grids: NCAR MPAS unstructured grid to POP ocean grid

– Impact: ESMF conservative interpolation solved problems with negative weights at the pole.

Regridding – Weight
Generation Impacts II

● Allows fast interpolation of enormous topography data set
– User: NASA Global Modeling and Assimilation Office

– Grids: 4km global lat/lon grid to 7km cubed sphere grid

– Impact: ESMF conservative regridding allows the interpolation of topography data in
1.5 minutes, which otherwise would take hours.

● Provides ability to do fast parallel interpolation between geographic
and magnetic grids
– User: NCAR High Altitude Observatory

– Grids: Global magnetic grid and global geographic grid

– Impact: ESMF bilinear regridding provides fast parallel interpolation to allow
interpolation between two different grids with two different distributions during run of
Thermosphere Ionosphere Mesosphere General Circulation Model (TIME-GCM).

● Allows fast interpolation of data between very large meshes
– User: Community Surface Dynamics Modeling System

– Grids: 16 million triangle mesh to 16 million triangle mesh

– Impact: ESMF bilinear regridding allows interpolation of data between two large
meshes that other packages could not handle for the surface dynamics community.

Regridding – Sparse Matrix
Multiplication Intro

● Method

ESMF_FieldRegridStoreESMF_FieldRegridStore(..., routehandle=rh)

actually does this:

‣ Compute interpolation weights for src → dst regridding

‣ Call ESMF_FieldSMMStoreESMF_FieldSMMStore(..., routehandle=rc)

● Method

ESMF_FieldRegridESMF_FieldRegrid(..., routehandle=rh)

actually does this:

‣ Call ESMF_FieldSMMESMF_FieldSMM(..., routehandle=rc)

Regridding – Sparse Matrix
Multiplication Features

● Apply coefficients (weights) in parallel to distributed
data.

● Index space operation, independent of higher level
interpretation (Regrid, Redist, Halo).

● Scalable parallel store implementation based on
distributed directory. [3]

● Auto-tuning during store for optimal execution
(outstanding comms, src/dst balance).

● Parallel execution, overlapping communication with
computation.

● Options to initialize destination elements: total, select,
empty.

● Non-blocking execution option, with test and wait.

Regridding – Sparse Matrix
Multiplication Performance

● Community Climate
System Model (CCSM)
atmosphere to ocean
grid remapping.

● Native data structures
wrapped in ESMF Arrays
with data referencing.

● Versions: ESMF: 400rp2, CCSM:
ccsm4_0_rel08

● Resolution: f05_t12 (fv 0.47x0.63
atmosphere/land, tripole 0.1 ocean
or 576x384 atmosphere/land and
3600x2400 ocean)

● Comparable
performance to native
code, slightly better
scaling at higher
processor counts

Regridding – Python
Interface Overview

● Prototype!!!Prototype!!!

● Separate CVS download
– http://esmfcontrib.cvs.sourceforge.net/viewvc/esmfcontrib/python/ESMP/

● Requirements
– python

– numpy

– ctypes

● Limited platform support

– Linux/Darwin, GCC(g++/gfortran), OpenMPI.

● Data type: ESMP_Field

● Grid types:

– Single-tile 2D logically rectangular type: ESMP_Grid

– Unstructured type: ESMP_Mesh

● Support for all ESMF interpolation options.

Regridding – Python
Interface Usage

import ESMP

ESMP.ESMP_Initialize()

field = ESMP.ESMP_FieldCreateGrid(grid, name)

routehandle =
ESMP.ESMP_FieldRegridStore(srcfield, dstfield,
srcMaskValues=_NP.array([1], dtype=_NP.int32),
dstMaskValues=_NP.array([1], dtype=_NP.int32),
regridmethod=ESMP.ESMP_REGRIDMETHOD_CONSERVE,
unmappedaction=ESMP.ESMP_UNMAPPEDACTION_ERROR,
srcFracField=srcfracfield,
dstFracField=dstfracfield)

ESMP.ESMP_FieldRegrid(srcfield, dstfield,
routehandle)

Outline

● Motivation and History

● Architecture

● Regridding

● Interoperability (NUOPC)

● Wrap-Up

Interoperability – ESMF
Coupling Options

● Fortran or C components

● Single executable

● Multiple executable
– Web service option

– Top level MPMD

– Fault-tolerant components (new in 5.3.0)

● Coupling communications can be called either from
within a coupler or directly
– from a gridded component – useful when it is inconvenient to return

from a component in order to perform a coupling operation

● Recursive components for nesting higher resolution
regions

● Ensemble management with either concurrent or
sequential execution of ensemble members

Interoperability –
Community of Components

ESMF Model Map 2010

Interoperability –
Components, a first step

● Interoperability on API level
➔ Component interaction through:

ESMF_State + ESMF_Clock

➔ Independently developed codes will compile and link.

● Interoperability problem pushed into run-time

● Small set of ESMF data structures in State
➔ ESMF_Field, ESMF_Array, ESMF_FieldBundle,

ESMF_ArrayBundle, ESMF_RouteHandle, ESMF_State

➔ Hold enough information for basic compatibility checking

● Need a common model architecture

● Need more metadata for checks and self doc

Interoperability - Attributes

● Attributes hold meta data in name/value pairs.
➔ AttributeAdd()/Set()/Get()

● Supported for:
➔ GridComp/CplComp

➔ State

➔ Field/FieldBundle

➔ Grid

➔ Array/ArrayBundle

➔ DistGrid

● Attribute hierarchies for model documentation.

● Attribute packages for standards:
➔ CF, ISO, METAFOR/CIM

● XML output option.

Interoperability - NUOPC

● National Unified Operational Prediction Capability
➔ Consortium of U.S. operational weather and water prediction

centers.

● Standardize the use of ESMF across NOAA,
Navy, Air Force, NASA, and other model
applications.

● Demonstrate improved level of interoperability.

● Develop a Common Model Architecture (CMA).

● NUOPC websites
➔ http://www.weather.gov/nuopc

➔ http://www.earthsystemmodeling.org/conventions/nuopc.shtml

http://www.weather.gov/nuopc

Interoperability – NUOPC
CMA Products

● “NUOPC Layer” as “add-on” in the ESMF distribution
➔ Generic Components:

Pre-compiled generic code with well-defined specialization points.

➔ Utility Routines:
E.g. NUOPC_FieldBundleUpdateTime(), NUOPC_PrintCurrTime(), ...

➔ Metadata dictonaries:
Field dictionary with StandardName and CanonicalUnits.

● Example codes, serving as templates for users
➔ Explicit ATM/OCN coupling

➔ Explicit ATM/OCN with mediator coupling

➔ Simple Implicit ATM/OCN

➔ Implicit ATM/OCN coupling with two time levels

➔ And more...

● Compliance Checker as runtime option.
● Regular telecons, trackers, documents.

Interoperability – NUOPC
CMA Details

● Major components (ATM, OCN, LND, ICE, WAV,...) are siblings.

● Major components are implemented as Gridded Components (ESMF_GridComp).

● Gridded Components own their Import State and Export State.

● Always two Gridded Components are connected through a Coupler Component
(ESMF_CplComp).

● Components are not allowed to modify the incoming (driver) Clock.

● Components must synchronize their internal Clock against the incoming Clock.

● Components must implement compatibility checking (“current time” and “time
step”) between internal and incoming Clock.

● Data between Gridded Components is exchanged through Fields (ESMF_Field).

● Fields used for data exchanged between Gridded Components must carry a
minimum of metadata (conveniently supplied through the NUOPC Field
Dictionary).

● Components must time stamp their export Fields.

● Components must check compatibility of the import Fields' time stamps.

Interoperability – NUOPC
Generic Components (GC)

● Fortran modules with generic ESMF_GridComp and
ESMF_CplComp implementations.

● NUOPC Types: Model, Mediator, Driver,
Connector.

Interoperability – NUOPC
GC: Public Elements

Fortran module:

use NUOPC_Model, only: &

 model_routine_SS => routine_SetServices, &→routines

 model_routine_Run => routine_Run, &

 model_type_IS => type_InternalState, & →derived types

 model_label_IS => label_InternalState, & →labels

 model_label_SetClock => label_SetClock, &

 model_label_Advance => label_Advance, &

 model_label_SetRunClock => label_SetRunClock, &

 model_label_CheckImport => label_CheckImport

Interoperability – NUOPC
GC: Specialization

Optional/required
attachable method:
MethodSet(), e.g. for
label_SetClock

Entry point for method +
phase: SetEntryPoint()

Set a generic routine
as entry point, e.g.
routine_Run

Phase 0 Phase 1
Phase 1

Phase 2

Overwrite a generic attachable
method with a phase specific one

Standard Component Methods
(I/R/F/WR/RR)

InternalState

varA
varB
...

Set some of the
members of
type_InternalState

Interoperability – NUOPC
CMA Adoption

● Navy: NOGAPS-HYCOM and NavGEM-HYCOM
➔ Fully functional explicit and semi-implict ATM-OCN coupling

based on NUOPC Layer.

● Navy: COAMPS (NCOM, SWAN, WaveWatchIII)
➔ Working prototype ATM-OCN-WAV coupling based on

NUOPC Layer.

● NOAA: NEMS (GFS-HYCOM)
➔ Prototype for ATM-OCN coupling based on NUOPC Layer

under development.

Outline

● Motivation and History

● Architecture

● Regridding

● Interoperability (NUOPC)

● Wrap-Up

ESMF v5.3.0 just released!

● 5.3.0 is backward compatible with 5.2.0r-series
➔ User code that works with 5.2.0r (or 5.2.0rp1, or 5.2.0rp2) will also work with 5.3.0.

● Regridding
– 3D first order conservative regridding.

– ESMF_RegridWeightGen supports GRIDSPEC (CF structured grid convention).

– ESMF_RegridWeightGen supports UGRID
(CF unstructured grid convention).

– Conservative regridding supports user supplied areas.

– Conservative regridding supports masking of unstructured Mesh.

● Prototype Python Interface
● Prototype fault-tolerant components
● NUOPC Layer

– NUOPC_Driver supports petList for Models, Mediators and Connectors, allowing concurrent
execution.

– NUOPC_Driver and NUOPC_Model components support simple explicit, semi-implicit, as well as
complex implicit component run sequences.

● XGrid creation supports lists of grids on either side (e.g. OCN+LND).

Active Development

● Python API

● NUOPC Layer

● Standard connectors to web services and other
interface standards (e.g. OpenMI).

● Regridding options

● Fault-tolerance

● I/O (consistent, efficient, parallel)

● String based access to object information
through Attributes

● Performance

Where to get HELP?

Documentation and training materials

● Users Guide, comprehensive Reference Manuals

● Many examples and system tests

● External demos, treating ESMF as external
dependency - the way a user application would.

If you’re stuck

● Write the support line,

esmf_support@list.woc.noaa.govesmf_support@list.woc.noaa.gov

If you’re really stuck

● We can usually arrange a call!

mailto:esmf_support@list.woc.noaa.gov

References

1. Khoei S.A., Gharehbaghi A. R., The superconvergent patch
recovery technique and data transfer operators in 3d plasticity
problems. Finite Elements in Analysis and Design, 43(8), 2007.

2. Hung K.C, Gu H., Zong Z., A modified superconvergent patch
recovery method and its application to large deformation
problems. Finite Elements in Analysis and Design, 40(5-6),
2004.

3. Pinar A., Hendrickson B., Communication Support for Adaptive
Computation, in Proc. SIAM Parallel Processing 01 – preprint.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

