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Motivation

In climate research and numerical weather prediction...

… increased emphasis on detailed representation of individual physical 
processes; requires many teams of specialists to contribute components to 
an overall modeling system.

In computing technology...

… increase in hardware and software complexity in high-performance 
computing, as we shift toward the use of multi-paradigm parallel computing 
architectures.

In software...

… emergence of frameworks to promote code reuse and interoperability.

● ESMF is a focused community effort to tame the complexity of models and 
the computing environment.

● It leverages, unifies and extends existing software frameworks, creating 
new opportunities for scientific contribution and collaboration.



  

History

Phase 1: 2002-2005

NASA’s Earth Science Technology Office ran a solicitation to develop an Earth System 
Modeling Framework (ESMF).

A multi-agency collaboration (NASA/NSF/DOE/NOAA) won the award.  The core 
development team was located at NCAR.

A prototype ESMF software package (version 2r) demonstrated feasibility.

Phase 2: 2005-2010

New sponsors included Department of Defense and NOAA.

Many new applications and requirements were brought into the project, motivating a 
complete redesign of framework data structures (version 3r).

Phase 3: 2010-2015

The core development team moved to NOAA/CIRES  for closer alignment with federal 
models.

Basic framework development has been completed with version 5r (ports, bugs, 
feature requests, user support etc. still require resources).

Extensions continue: regridding, interoperability and language bindings.

The focus is on increasing adoption and creating a community of interoperable codes.



  

Backward Compatibility

● Starting with ESMF v5.2.0r, > 75% of the API are 
marked as backward compatible.

● User code relying on these calls will compile with 
future versions of ESMF (unchanged!).

● Provides a solid platform for application 
development.

● Some newer interfaces are exempt (e.g. location 
streams, exchange grids, …).

● Keyword enforcement (e.g., rc=localrc) for optional 
arguments is an important mechanism.

● Additional optional arguments can be introduced.
● Additional methods or overloads can be introduced.
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Architecture – Overview I

● Base library of about 500,000 lines of source code.

● 60% in Fortran, 40% in C/C++

● Complete Fortran API:

– use ESMF

– Derived types and methods

● Limited C API:

– #include “ESMC.h”

– Structs and methods

● Emerging Python API

– import ESMP

– Classes with methods



  

Architecture – Overview II

● Unix/Linux and Windows (Cygwin/MinGW) 
systems

● Based on MPI (bypass mode “mpiuni” as 
option)

● OpenMP and Pthreads support

● I/O trough NetCDF/HDF, Xerces, or PIO

● Sockets for web services and fault-tolerance 
extensions

● Highly portable: tested on > 40 different 
OS/Compiler/MPI combinations every night.

● Over 170,000 lines of example, unit and system 
testing code.



  

Architecture – Distributed 
Classes

Superstructure

In
fr

as
tr

uc
tu

re

xor

ArrayBundle

VM

RouteHandle

LocalArray

State

Field

Array

DistGrid

DELayout

FieldBundle

LocStream

Grid Mesh

XGrid

GridComp/CplComp

0..*
0..*

0..*

0..*

0..*

0..*

arrayCount

0..*

0..*

0..*

0..*

0..* 0..* 0..*

0..* 0..*

0..*

0..*2

1 1

deCount

1

1

1

1

0,10,1

0..*

0..*fieldCount

0,1

0,1

0,10,1

0..*

0..*

0..*

0..*

0..* 0..*0..*
0..*

1 1

1

1

1..n
1..n

1..n

1

0..*



  

Architecture – Utility 
Classes

Config Log

TimeMgr

Infrastructure



  

Architecture – Components 
and States
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Architecture – The ESMF 
Burrito
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Architecture – Component 
Hierarchy

● Components can be arranged hierarchically, helping to organize 
the structure of complex models.

● Different modeling groups may create different kinds or levels of 
components.

ESMF components in 
the GEOS-5 
atmospheric GCM



  

Architecture – Component 
Overhead

● Overhead of ESMF 
component wrapper 
around native CCSM4 
component.

● For this exercise, 
ESMF wrapping 
required NO code 
changes to the 
scientific modules.

● No significant 
performance overhead 
(<3% is typical)

● Few code changes for 
codes that are modular.

● Platform: IBM Power 575, bluefire, at 
NCAR

● Versions: CCSM_4_0_0_beta42 and 
ESMF_5_0_0_beta_snapshot_01

● Resolution: 1.25 degree x 0.9 degree 
global with 17 vertical levls for both the 
atmospheric and land model. Ocean 
model resolution is 320x384x60.



  

Architecture – Distributed 
Data I
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● Local memory allocations remain 
indexed in 2D.

● Grid has a more restrictive irregular 
block decomposition.

● Undistributed dimensions add to 
allocation dimensionality.

● Local memory allocations 1D.

● Arbitrarily decomposed logically 
rectangular data.

● Unstructured data.

● Undistributed dimensions add 
to allocation dimensionality.



  

VM

Architecture – Distributed 
Data II
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Architecture – Distributed 
Data III

Field = Array + (some form of grid object)
● Grid

– Structured representation of a region.

– Logically rectangular coordinates in 1D, 2D, 3D.

● LocStream
– Locations of a set of data points.

– Any dimension, coordinates are stored as “keys”.

● Mesh

– Unstructured representation of a region.

– Nodes with 2D or 3D coordinates.

– Elements: triangles/quadrilaterals for 2D parametric space

 tetrahedrons/hexahedrons for 3D parametric space

● Grid

– 2D boundary layer between two model grids.

– Represented by a custom constructed Mesh.
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Regridding - Introduction

Regridding (or remapping or interpolation) is the process 
of moving data from one grid to another while preserving 
qualities of the original data.

● Regrid Weight Generation

– Wide range of grids: structured and unstructured, 
global and regional, 2D and 3D.

– Parallel, scalable and fast.

● Sparse Matrix Multiplication

– Index space operation, independent of higher level 
interpretation.

– Parallel, scalable and fast.



  

Regridding – Weight 
Generation Features I

● Flexible
– Computes weights between a wide range of grids:  structured and 

unstructured, global and regional,  2D and 3D

– Options for interpolation method, pole treatment, masked points, …

● Accurate and Portable
– Spherical regridding handled in 3D to avoid pole issues

– Tested nightly on many platforms

● Parallel and Fast
– Able to compute weights in minutes which before took hours

– Able to compute weights between very large grids

● Community developed
– Supported by NASA, NOAA, DOD and NSF funding

– Well established (since 2005) community processes for prioritization, 
support and review. 

– Development priorities set by users through quarterly Change Review 
Board (CRB) meetings



  

Regridding – Weight 
Generation Features II

● Interpolation types
– Bilinear

– Higher order

‣ Yields better derivatives/smoother results than bilinear.

‣ Based on “patch recovery” used in finite element modeling [1][2].

– First order conservative

● Masking
– Source

– Destination

● Unmapped destination point handling
– Error

– Ignore

● Pole options for global spherical logically rectangular Grids
– Full circle average: artificial pole is average of all source points next to pole

– N-point average: artificial pole is average of n top source neighbors of dest point

– Teeth: gap at pole filled by triangles

– No pole: error if destination point lies above top row of source points



  

Regridding – Weight 
Generation User Interfaces

● Stand alone application (offline)
– Generates a NetCDF weight file from two NetCDF grid files.

– Formats (all NetCDF): SCRIP, ESMF unstructured format, CF GridSpec 
structured convention, and CF UGrid unstructured convention.

– Builds and installs with the ESMF source code distribution.

mpirun –np 32 ESMF_RegridWeightGenESMF_RegridWeightGen –s src_grid.nc  –d \ 
dst_grid.nc –m bilinear –w weights.nc

● API calls (integrated)
– ESMF library calls directly accessible during model run.

– Interfaces available in Fortran, C and Python.

– Access  weights or directly store parallel sparse matrix multiply communication.

– Can be used without other parts of ESMF (e.g. components are not needed).

call ESMF_FieldRegridStoreESMF_FieldRegridStore(srcField=src, dstField=dst, & 
regridMethod=ESMF_REGRID_METHOD_BILINEAR, routehandle=rh)

call ESMF_FieldRegridESMF_FieldRegrid(srcField=src, dstField=dst, & 
routehandle=rh)



  

Regridding – Offline 
supported grids

HOMME Cubed Sphere Grid with Pentagons
Courtesy Mark Taylor of Sandia

FIM Unstructured Grid Regional Grid

● Grids with spherical (lon, lat) coordinates.

● Mix and match pairs of:
– Global 2D logically rectangular grids

– Regional 2D logically rectangular grids

– 2D unstructured meshes composed of polygons with any number of sides (triangles, quadrilaterals, 
pentagons, hexag..):

‣ ESMF internally represents these as triangles and quadrilaterals

● Multi-patch grids (e.g. cubed spheres) currently supported via unstructured formats.

● Multi-patch support expected with complete GridSpec implementation.

● 3D Cartesian unstructured grids.

Regional Grid



  

Regridding – Integrated 
supported grids

● In addition, integrated regridding supports Cartesian (x,y) 
coordinates:
– Regridding between any pair of:

‣ 2D meshes composed of triangles and quadrilaterals

‣ 2D logically rectangular grids composed of a single patch

● Bilinear or conservative regridding between any pair of:
– 3D meshes composed of hexahedrons

– 3D logically rectangular grids composed of a single patch

     2D Unstructured Mesh
From www.ngdc.noaa.gov

3D Grid 3D Unstructured Mesh



  

Regridding – Weight 
Generation Performance

● Always go through 
unstructured Mesh.

● Increases flexibility. 

● Small add. overhead to 
bilinear interpolation.

● Greatly improves 
performance over 
existing conservative 
methods.

● Platform:  Crag XT4, jaguar at ORNL

● Version: 
ESMF_5_2_0_beta_snapshot_07

● fv0.47x0.63: CAM Finite Volume 
grid, 576x384                              

● ne60np4: 0.5 degree cubed sphere 
grid with pentagons, 180x180x6

● Previous solution takes 635s 
(20x) to compute 
conservative weights

● Previous solution unable to 
compute bilinear weights 
from cubed sphere



  

Regridding – Weight 
Generation Impacts I

● Higher order interpolation leads to reduced noise in wind stress values
– User:  Community Earth System Model

– Grids:  CAM atmosphere lat/lon to POP ocean displaced pole lat/lon

– Impact:  ESMF patch interpolation reduced imprint of coarser resolution atmosphere grid on 
ocean for interpolated wind stress values. Interpolation weights used in CCSM4 and 
subsequent IPCC runs

● Better interpolation of cubed sphere (unstructured) and lat/lon ocean
– User:  Community Earth System Model

– Grids:  HOMME cubed sphere atmosphere to lat/lon ocean grid

– Impact:  ESMF conservative regridding enabled easier integration of a high resolution 
dynamical core into CAM, reduced distortion near the pole. 

● Enables CLM land model to run on cubed sphere
– User:  Community Earth System Model

– Grids:  Land lat/lon to HOMME cubed sphere

– Impact:  ESMF parallel bilinear mapping from lat/lon to HOMME cubed sphere allowed 
investigation of high resolution land model to move forward for CESM.

● Better values at poles for unstructured to lat/lon remapping
– User:  Community Earth System Model 

– Grids:  NCAR MPAS unstructured grid to POP ocean grid

– Impact:  ESMF conservative interpolation solved problems with negative weights at the pole.



  

Regridding – Weight 
Generation Impacts II

● Allows fast interpolation of enormous topography data set
– User:  NASA Global Modeling and Assimilation Office

– Grids:  4km global lat/lon grid to 7km cubed sphere grid

– Impact:  ESMF conservative regridding allows the interpolation of topography data in 
1.5 minutes, which otherwise would take hours.  

● Provides ability to do fast parallel interpolation between geographic 
and magnetic grids
– User:  NCAR High Altitude Observatory

– Grids:  Global magnetic grid and global geographic grid

– Impact:  ESMF bilinear regridding provides fast parallel interpolation to allow 
interpolation between two different grids with two different distributions during run of 
Thermosphere Ionosphere Mesosphere General Circulation Model (TIME-GCM). 

● Allows fast interpolation of data between very large meshes 
– User:  Community Surface Dynamics Modeling System

– Grids:  16 million triangle mesh to 16 million triangle mesh

– Impact:  ESMF bilinear regridding allows interpolation of data between two large 
meshes that other packages could not handle for the surface dynamics community. 



  

Regridding – Sparse Matrix 
Multiplication Intro

● Method

ESMF_FieldRegridStoreESMF_FieldRegridStore(..., routehandle=rh)

actually does this:

‣ Compute interpolation weights for src → dst regridding

‣ Call ESMF_FieldSMMStoreESMF_FieldSMMStore(..., routehandle=rc)

● Method

ESMF_FieldRegridESMF_FieldRegrid(..., routehandle=rh)

actually does this:

‣ Call ESMF_FieldSMMESMF_FieldSMM(..., routehandle=rc)



  

Regridding – Sparse Matrix 
Multiplication Features

● Apply coefficients (weights) in parallel to distributed 
data.

● Index space operation, independent of higher level 
interpretation (Regrid, Redist, Halo).

● Scalable parallel store implementation based on 
distributed directory. [3]

● Auto-tuning during store for optimal execution 
(outstanding comms, src/dst balance).

● Parallel execution, overlapping communication with 
computation.

● Options to initialize destination elements: total, select, 
empty.

● Non-blocking execution option, with test and wait.



  

Regridding – Sparse Matrix 
Multiplication Performance

● Community Climate 
System Model (CCSM) 
atmosphere to ocean 
grid remapping.

● Native data structures 
wrapped in ESMF Arrays 
with data referencing.

● Versions:  ESMF: 400rp2, CCSM: 
ccsm4_0_rel08

● Resolution: f05_t12 (fv 0.47x0.63 
atmosphere/land, tripole 0.1 ocean 
or 576x384 atmosphere/land and 
3600x2400 ocean)

● Comparable 
performance to native 
code, slightly better 
scaling at higher 
processor counts



  

Regridding – Python 
Interface Overview

● Prototype!!!Prototype!!!

● Separate CVS download
– http://esmfcontrib.cvs.sourceforge.net/viewvc/esmfcontrib/python/ESMP/

● Requirements
– python

– numpy

– ctypes

● Limited platform support

– Linux/Darwin, GCC(g++/gfortran), OpenMPI.

● Data type: ESMP_Field

● Grid types:

– Single-tile 2D logically rectangular type: ESMP_Grid

– Unstructured type: ESMP_Mesh

● Support for all ESMF interpolation options.



  

Regridding – Python 
Interface Usage

import ESMP

ESMP.ESMP_Initialize()

field = ESMP.ESMP_FieldCreateGrid(grid, name)

routehandle = 
ESMP.ESMP_FieldRegridStore(srcfield, dstfield, 
srcMaskValues=_NP.array([1], dtype=_NP.int32), 
dstMaskValues=_NP.array([1], dtype=_NP.int32), 
regridmethod=ESMP.ESMP_REGRIDMETHOD_CONSERVE, 
unmappedaction=ESMP.ESMP_UNMAPPEDACTION_ERROR, 
srcFracField=srcfracfield, 
dstFracField=dstfracfield)

ESMP.ESMP_FieldRegrid(srcfield, dstfield, 
routehandle)
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Interoperability – ESMF 
Coupling Options

● Fortran or C components

● Single executable

● Multiple executable
– Web service option

– Top level MPMD

– Fault-tolerant components (new in 5.3.0)

● Coupling communications can be called either from 
within a coupler or directly
– from a gridded component – useful when it is inconvenient to return 

from a component in order to perform a coupling operation

● Recursive components for nesting higher resolution 
regions

● Ensemble management with either concurrent or 
sequential execution of ensemble members



  

Interoperability – 
Community of Components

ESMF Model Map 2010



  

Interoperability – 
Components, a first step

● Interoperability on API level
➔ Component interaction through: 

ESMF_State + ESMF_Clock

➔ Independently developed codes will compile and link.

● Interoperability problem pushed into run-time

● Small set of ESMF data structures in State
➔ ESMF_Field, ESMF_Array, ESMF_FieldBundle, 

ESMF_ArrayBundle, ESMF_RouteHandle, ESMF_State

➔ Hold enough information for basic compatibility checking

● Need a common model architecture

● Need more metadata for checks and self doc



  

Interoperability - Attributes

● Attributes hold meta data in name/value pairs.
➔ AttributeAdd()/Set()/Get()

● Supported for:
➔ GridComp/CplComp

➔ State

➔ Field/FieldBundle

➔ Grid

➔ Array/ArrayBundle

➔ DistGrid

● Attribute hierarchies for model documentation.

● Attribute packages for standards:
➔ CF, ISO, METAFOR/CIM

● XML output option.



  

Interoperability - NUOPC

● National Unified Operational Prediction Capability
➔ Consortium of U.S. operational weather and water prediction 

centers.

● Standardize the use of ESMF across NOAA, 
Navy, Air Force, NASA, and other model 
applications.

● Demonstrate improved level of interoperability.

● Develop a Common Model Architecture (CMA).

● NUOPC websites
➔ http://www.weather.gov/nuopc

➔ http://www.earthsystemmodeling.org/conventions/nuopc.shtml

http://www.weather.gov/nuopc


  

Interoperability – NUOPC 
CMA Products

● “NUOPC Layer” as “add-on” in the ESMF distribution
➔ Generic Components: 

Pre-compiled generic code with well-defined specialization points.

➔ Utility Routines:
E.g. NUOPC_FieldBundleUpdateTime(), NUOPC_PrintCurrTime(), ...

➔ Metadata dictonaries:
Field dictionary with StandardName and CanonicalUnits.

● Example codes, serving as templates for users
➔ Explicit ATM/OCN coupling

➔ Explicit ATM/OCN with mediator coupling

➔ Simple Implicit ATM/OCN

➔ Implicit ATM/OCN coupling with two time levels

➔ And more...

● Compliance Checker as runtime option.
● Regular telecons, trackers, documents.



  

Interoperability – NUOPC 
CMA Details

● Major components (ATM, OCN, LND, ICE, WAV,...) are siblings.

● Major components are implemented as Gridded Components (ESMF_GridComp).

● Gridded Components own their Import State and Export State.

● Always two Gridded Components are connected through a Coupler Component 
(ESMF_CplComp).

● Components are not allowed to modify the incoming (driver) Clock.

● Components must synchronize their internal Clock against the incoming Clock.

● Components must implement compatibility checking ( “current time” and “time 
step”) between internal and incoming Clock.

● Data between Gridded Components is exchanged through Fields (ESMF_Field).

● Fields used for data exchanged between Gridded Components must carry a 
minimum of metadata (conveniently supplied through the NUOPC Field 
Dictionary).

● Components must time stamp their export Fields.

● Components must check compatibility of the import Fields' time stamps.



  

Interoperability – NUOPC 
Generic Components (GC)

● Fortran modules with generic ESMF_GridComp and 
ESMF_CplComp implementations.

● NUOPC Types:  Model, Mediator, Driver, 
Connector.



  

Interoperability – NUOPC 
GC: Public Elements

Fortran module:

use NUOPC_Model, only: &

  model_routine_SS        => routine_SetServices, &→routines

  model_routine_Run       => routine_Run, &

  model_type_IS           => type_InternalState, & →derived types

  model_label_IS          => label_InternalState, & →labels

  model_label_SetClock    => label_SetClock, &

  model_label_Advance     => label_Advance, &

  model_label_SetRunClock => label_SetRunClock, &

  model_label_CheckImport => label_CheckImport



  

Interoperability – NUOPC 
GC: Specialization

Optional/required 
attachable method: 
MethodSet(), e.g. for
label_SetClock

Entry point for method + 
phase: SetEntryPoint()

Set a generic routine 
as entry point, e.g. 
routine_Run

Phase 0 Phase 1
Phase 1

Phase 2

Overwrite a generic attachable 
method with a phase specific one

Standard Component Methods 
(I/R/F/WR/RR)

InternalState

varA
varB
...

Set some of the 
members of 
type_InternalState



  

Interoperability – NUOPC 
CMA Adoption

● Navy: NOGAPS-HYCOM and NavGEM-HYCOM
➔ Fully functional explicit and semi-implict ATM-OCN coupling 

based on NUOPC Layer.

● Navy: COAMPS (NCOM, SWAN, WaveWatchIII)
➔ Working prototype ATM-OCN-WAV coupling based on 

NUOPC Layer.

● NOAA: NEMS (GFS-HYCOM)
➔ Prototype for ATM-OCN coupling based on NUOPC Layer 

under development.
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ESMF v5.3.0 just released!

● 5.3.0 is backward compatible with 5.2.0r-series
➔ User code that works with 5.2.0r (or 5.2.0rp1, or 5.2.0rp2) will also work with 5.3.0.

● Regridding
– 3D first order conservative regridding.

– ESMF_RegridWeightGen supports GRIDSPEC (CF structured grid convention).

– ESMF_RegridWeightGen supports UGRID
(CF unstructured grid convention).

– Conservative regridding supports user supplied areas.

– Conservative regridding supports masking of unstructured Mesh.

● Prototype Python Interface
● Prototype fault-tolerant components
● NUOPC Layer

– NUOPC_Driver supports petList for Models, Mediators and Connectors, allowing concurrent 
execution.

– NUOPC_Driver and NUOPC_Model components support simple explicit, semi-implicit, as well as 
complex implicit component run sequences.

● XGrid creation supports lists of grids on either side (e.g. OCN+LND).



  

Active Development

● Python API

● NUOPC Layer

● Standard connectors to web services and other 
interface standards (e.g. OpenMI).

● Regridding options

● Fault-tolerance

● I/O (consistent, efficient, parallel)

● String based access to object information 
through Attributes

● Performance



  

Where to get HELP?

Documentation and training materials

● Users Guide, comprehensive Reference Manuals

● Many examples and system tests

● External demos, treating ESMF as external 
dependency - the way a user application would.

If you’re stuck

● Write the support line,

esmf_support@list.woc.noaa.govesmf_support@list.woc.noaa.gov

If you’re really stuck

● We can usually arrange a call!

mailto:esmf_support@list.woc.noaa.gov
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