

The
Programming Model for ConcurrencyProgramming Model for Concurrency

in the
Earth System Modeling Framework

SIMAC Workshop,
U of Chicago

Gerhard Theurich (NRL/ESMF/SAIC),
ESMF Core Team

December 10, 2012

http://www.earthsystemmodeling.org/

ESMF?

In climate research and numerical weather prediction...

… increased emphasis on detailed representation of individual physical
processes; requires many teams of specialists to contribute components to
an overall modeling system.

In computing technology...

… increase in hardware and software complexity in high-performance
computing, as we shift toward the use of multi-paradigm parallel computing
architectures.

In software...

… emergence of frameworks to promote code reuse and interoperability.

● ESMF is a focused community effort to tame the complexity of models and
the computing environment.

● It leverages, unifies and extends existing software frameworks, creating
new opportunities for scientific contribution and collaboration.

History

Phase 1: 2002-2005

NASA’s Earth Science Technology Office ran a solicitation to develop an Earth System
Modeling Framework (ESMF).

A multi-agency collaboration (NASA/NSF/DOE/NOAA) won the award. The core
development team was located at NCAR.

A prototype ESMF software package (version 2r) demonstrated feasibility.

Phase 2: 2005-2010

New sponsors included Department of Defense and NOAA.

Many new applications and requirements were brought into the project, motivating a
complete redesign of framework data structures (version 3r).

Phase 3: 2010-2015

The core development team moved to NOAA/CIRES for closer alignment with federal
models.

Basic framework development has been completed with version 5r (ports, bugs,
feature requests, user support etc. still require resources).

Extensions continue: regridding, interoperability, I/O, and language bindings.

The focus is on increasing adoption and creating a community of interoperable codes.

Architecture – Overview I

● Base library of about 500,000 lines of source code.

● 60% in C/C++, 40% in Fortran (prior to autogen.)

● Complete Fortran user API

– use ESMF

– Derived types and methods

● Limited C user API

– #include “ESMC.h”

– Structs and methods

● Emerging Python user API

– import ESMP

– Classes with methods

Architecture – Overview II

● Unix/Linux and Windows (Cygwin/MinGW)

● Based on MPI (bypass mode “mpiuni” as option)

● OpenMP and Pthreads support

● OpenACC support

● I/O through NetCDF/HDF, Xerces, or PIO

● Sockets for web services and fault-tolerance extensions

● Highly portable: tested on > 40 different OS/Compiler/MPI

combinations every night.

● Over 170,000 lines of example, unit and system testing code.

Search for Concurrency

● Domain specific (Earth System Modeling) parallel
data structures:
– Components: task-parallism

– Arrays/Fields: data-parallelism

● User directed parallelism:
– OpenMP

– OpenACC

Components in
Earth System Modeling

ATM

OCN

LND

Sea-Ice

...

LNDLNDLND

...
...

CPL
Exchange of state
and flux variables

Concurrency between
Components

● Technical requirement: separate sets of threads

● Scientific limitations: e.g. ATM ↔ OCN ≈ 12sim.h

CPL (~1s / sim.day)

ATM
(~10s / sim.day)

OCN
(~10s / sim.day)

PE (e.g. cores)

0 64 128do
call ESMF_GridCompRun(atm)
call ESMF_GridCompRun(ocn)
call ESMF_CplCompRun(cpl)

enddo

The PET Abstraction

● PET stands for “Persistent Execution Thread”

● Persists at least as long as the objects it operates
on (Component scope)

● PETs can be implemented as MPI tasks or
Pthreads – looks the same to the ESMF user

● PETs are used to manage processing elements
(PEs) and to allow concurrent execution of
Components:

atm = ESMF_GridCompCreate(petList=(/0..63/))

ocn = ESMF_GridCompCreate(petList=(/64..127/))

cpl = ESMF_CplCompCreate(petList=(/0..127/))

Concurrency within
Components

● Domain decomposition: data parallelism

● Distributed data structures: Array/Field

● High level code or algorithms are written
exclusively using the Array/Field abstraction,
not directly using lower layer APIs (e.g. MPI):

call ESMF_FieldRegrid(field)

call ESMF_FieldGather(field)

call ESMF_FieldSMM(field)

call ESMF_FieldHalo(field)

call ESMF_ArrayRedist(array)

call ESMF_ArrayScatter(array)

Concurrency between
communication-computation

DE 0

DE 1

DE 2

DE 3

Domain Decomposition

call ESMF_FieldHalo(fieldB, &
 NBSTART, routehandle)

do

 call ESMF_FieldHalo(fieldA, &
 NBSTART, routehandle)

 call ESMF_FieldHalo(fieldB, &
 NBWAITFINISH, routehandle)

 … work on fieldB …

 call ESMF_FieldHalo(fieldB, &
 NBSTART, routehandle)

 call ESMF_FieldHalo(fieldA, &
 NBWAITFINISH, routehandle)

 … work on fieldA …

enddo

PET0 PET1 PET2 PET3

PE0 PE1 PE2 PE3

VM

Mapping Distributed Data
against OS and HW

Array/DistGrid

A11 A12 A13
A21 A22 A23
A31 A32 A33
A41 A42 A43
A51 A52 A53
A61 A62 A63

PET 0 PET 1 PET 2
processes + threads
→ persistent execution threads (PETs)
→ virtual address spaces (VASs)

10
Hardware:

→ Proc. Elements (PEs)
 → Compute units → Single System Images

DE0

2 3 4 5

OS:

DE1

DE2

DE3

DELayout

Components with Threads
Work Queue Balancing

● Some PETs implemented as Pthreads

● Threading level set by user

● Threading level set during Component creation

DE0 DE1 DE2 DE3 DE4 DE5 DE6 DE7

PET0 PET1
VAS0

do i=1, localDeCount
 workDe = localDeToDeMap(i)
 reply = ESMF_DELayoutServiceOffer(delayout, de=workDe)
 if (reply == ACCEPT) then
 … do work for workDe …
 call ESMF_DELayoutServiceComplete(delayout, de=workDe)
 endif
enddo

User Level Threading:
OpenMP

● PETs associated with multiple PEs

● PET to PE mapping set by user

● PET to PE mapping set during Component
creation DE0 DE1

PET0 PET1

10 2 3

 call ESMF_VMGet(peCount)

!$call omp_set_num_threads(peCount)
!$omp parallel do &
!$omp& shared (farrayPtr)

 do j = lbound(farrayPtr, 2), ubound(farrayPtr, 2)
 do i = lbound(farrayPtr, 1), ubound(farrayPtr, 1)
 … work on farrayPtr …
 enddo
 enddo

User Level GPU Code:
OpenACC

● PETs placed to have access to node's GPU

● PET placement set by user

● PET placement set during Component creation
DE0 DE1

PET0 PET1

0 2

 jl = lbound(farrayPtr, 2)
 ju = ubound(farrayPtr, 2)
 il = lbound(farrayPtr, 1)
 iu = ubound(farrayPtr, 1)

!$acc kernels

 do j = jl, ju
 do i = il, iu
 … work on farrayPtr …
 enddo
 enddo

!$acc end kernels

GPU GPU

Conclusions / Challenges

● ESMF is a domain-specific (Earth System Modeling)
technical infrastructure software

● Concurrency based on componentization, domain
decomposition and user directed fine grained
parallelism

● Componentization and domain decomposition
through a standard API

● High level code is shielded from some of the low
level details of the compute architecture

● Fine-grained parallelism not efficiently abstracted
(kernel compiler support?)

● Mitigation of data movement cost for GPU use (keep
track of data location in ESMF Array/Field)

THANK YOU!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

