National Unified Operational Prediction Capability
NUOPC Layer:

ESMF Compliance Checker – ESMF v6.2.0

May 23, 2013
1 Purpose
This document describes the automated checking for compliance of NUOPC Layer conventions as available in ESMF release 6.2.0. Automated compliance checking makes the elements of compliance clear and objective, makes enforcing compliance simpler, and promotes early integration of models and model components from different centers. This is intended as document that will evolve along side the compliance checker implementation as the NUOPC Layer is further defined and developed.
2 Background
The National Unified Operational Prediction Capability (NUOPC) is developing a Common Model Architecture (CMA) for an operational numerical weather prediction ensemble modeling system. NUOPC infrastructure will be based on the Earth System Modeling Framework (ESMF), a model coupling and utility package that has been developed by a multi-agency consortium. The NUOPC CMA Committee Report
 outlined a desired level of interoperability for NUOPC and the subsequent need for a NUOPC Layer which imposes additional usage conventions and content standards on ESMF components used in NUOPC applications. The precise definition of many details of the NUOPC CMA standard is still a matter of ongoing discussion, and it is the charter of the Contents Standards Committee (CSC), a NUOPC/CMA sub-committee, to engage the appropriate application teams to specify these details. On a technical level the NUOPC Layer must make provisions to supply the developers at NUOPC Modeling Centers and NUOPC Component Providers with concrete code constructs that encode and to the extent possible enforce the NUOPC CMA standards.
3 Compliance Checker Functions
The compliance checker has several distinct functions.
1. During ESMF adoption and subsequent development, the compliance checker will enable modelers to determine when they have achieved compliance.

2. During integration of components and testing of integrated systems, the compliance checker will supplement existing test code to indicate where problems may be occurring.

3. When a new version of a component or model is released, the compliance checker will produce a summary report that describes the system on a component-by-component basis. These reports can be collected into a database of NUOPC-compliant components and systems.

4. The compliance checker can be turned off during production runs without recompilation.

4 The ESMF Integrated Compliance Checker
The compliance checker is turned off by default, as to not negatively affect performance critical runs. The ESMF runtime environment variable ESMF_RUNTIME_COMPLIANCECHECK can be set to ON to activate the compliance checker. This is a runtime variable and does not require recompilation of the ESMF library or the user application.

The integrated ESMF compliance checker reports on the following elements of the dynamic component interface:
· Presence of standard ESMF Initialize, Run, and Finalize methods and the number of phases in each (see section 4.1)

· Timekeeping conforms to NUOPC conventions (see section 4.2)

· Fields or FieldBundles (not Arrays/ArrayBundles) are passed between Components (see section 4.3)

· Which Fields are passed through import States and export States (see section 4.4)

· Required Component and Field metadata is present (see section 4.5)

· Component control flow (CCF) - the dynamic counter part to the static Component hierarchy (see section 4.6)

The ESMF compliance checker uses the ESMF Log facility to produce the compliance report during the execution of an ESMF application. The output is located in the default ESMF Log files. The advantages of using the existing Log facility to generate the compliance report are 1) automatically correct chronological ordering of the compliance checker entries with other ESMF system level or user level entries, and 2) leveraging of the existing log features such as time stamping of messages, file access and multi-PET issues.

The format of all compliance checker Log entries adheres to the following pattern:

20101004 122252.644183 INFO PET0 COMPLIANCECHECKER:|->:user model 1:Start InitializePrologue.
|<--- LogTimeStamp ----------------->| INFO|ERROR PETid |<-ComplianceCheckerTag->|:CCF-level:ComponentName:|<------ message detail --------------------->|

The standard fields in detail are:

LogTimeStamp:

This is the standard time stamp in the ESMF Log

format.
INFO|ERROR:

By default the compliance checker logs its messages

as INFO. ERROR messages are generated when a

non-compliant situation is detected.
PETid:

Standard ESMF Log field indicating the PET from

where message originates.
ComplianceCheckerTag:
The first field after the standard Log format fields

contains the
exact string “COMPLIANCECHECKER”. This tag

can be used to identify (e.g. for grep) all compliance

checker log entries.
“:”:

Separator between compliance checker log entry

fields.
CCF-level:

The component control flow level is indicated by a

sequence of
“|->” strings. For instance, if a first

generation Component calls a Component method

of the next generation the CCF-level will be “|->|->”.

This helps analyze and understand the dynamic

behavior of the application's Component hierarchy.
“:”:

Separator between compliance checker log entry

fields.

“ComponentName”:

The name of the Component that corresponds to the

compliance checker entry.

“:”:

Separator between compliance checker log entry

fields.

“message detail”:

In this field the compliance checker indicates details

about the INFO or ERROR that it reports. The

possible outputs going into this field are described

in the following sections.

The compliance checker is executed at well defined stages during ESMF application execution. The following bullets use ESMF Gridded Component calls for clarity, but apply to the ESMF Coupler Component class in the same manner. The compliance checker stages are:

· Right after the user specified routine in ESMF_GridCompSetServices()has returned, but before control is given back to the calling parent. The begin and end of this compliance checker phase is indicated by “Start register compliance check.” and “Stop register compliance check.” INFO log entries, respectively.

· When the parent calls into a child Component via ESMF_GridCompInitialize/Run/Finalize(), right before control is given to the registered child routine. The begin and end of this compliance checker phase is indicated by “Start InitializePrologue.” and “Stop InitializePrologue.” INFO log entries, respectively, and similar for Run and Finalize.
· Right after the ESMF_GridCompInitialize/Run/Finalize()returns from the child registered routine, but before control is given back to the calling parent. The begin and end of this compliance checker phase is indicated by “Start InitializeEpilogue.” and “Stop InitializeEpilogue.” INFO log entries, respectively, and similar for Run and Finalize.

4.1 Presence of standard ESMF Initialize, Run, and Finalize methods

The compliance checker reports on the presence of standard ESMF Initialize, Run and Finalize methods and the number of registered phases. The following example shows a case where the “user model 2” Component registered a one-phase Initialize, but did not register Run and Finalize methods:
20101004 202650.869041 INFO PET4 COMPLIANCECHECKER:|->:user model 2:Start registerIC.

20101004 202650.869128 INFO PET4 COMPLIANCECHECKER:|->:user model 2: 1 phase(s) of Initialize registered.

20101004 202650.869356 ERROR PET4 COMPLIANCECHECKER:|->:user model 2: ==> No Run method registered!

20101004 202650.869391 ERROR PET4 COMPLIANCECHECKER:|->:user model 2: ==> No Finalize method registered!

20101004 202650.869430 INFO PET4 COMPLIANCECHECKER:|->:user model 2:Stop registerIC.
4.2 Timekeeping conforms to NUOPC conventions
There are two pieces to the developed NUOPC timekeeping conventions:

1. The child Component is not allowed to modify the parent Clock that is passed through the Component method interface.

2. The child Component must possess its own internal Clock. This child Clock must be kept in sync with the parent Clock. Specifically, on return from a child Component method the “current time” of the child Clock must be identical to the “stop time” indicated by the parent Clock.

The following output shows an example where the incoming parent Clock was modified by the child Component, and where the internal Clock is detected invalid:
20101006 071305.987873 ERROR PET0 COMPLIANCECHECKER:|->:user model 1: ==> The incoming Clock was modified!

20101006 071305.987895 ERROR PET0 COMPLIANCECHECKER:|->:user model 1: ==> The internal Clock is invalid!
The output below shows the case where the internal Clock is valid, and has correctly set start and stop times, however, the current time has not reached the stop time.
20101006 071305.997708 INFO PET4 COMPLIANCECHECKER:|->:user model 2: The internal Clock matches incoming Clock.

20101006 071305.997828 ERROR PET4 COMPLIANCECHECKER:|->:user model 2: ==> The internal Clock has not run to its stopTime!
4.3 Fields/FieldBundles (not Arrays/ArrayBundles) between Components
The compliance checker analyzes both import and export States as they enter and leave through the child Component method interface. One of the items checked for is whether Arrays or ArrayBundles are passed through the States, which is not compliant with the NUOPC convention. The following shows output that is generated in this case:

20101005 071809.894785 ERROR PET0 COMPLIANCECHECKER:|->:user model 1: ==> The importState contains an ESMF_Array object!
4.4 Which Fields are passed through import States and export States
The compliance checker generates INFO output, listing all objects by type and name entering and leaving through the import and export States.
20101005 071809.894478 INFO PET0 COMPLIANCECHECKER:|->:user model 1: importState name: State 3

20101005 071809.894503 INFO PET0 COMPLIANCECHECKER:|->:user model 1: importState statetype: ESMF_STATE_IMPORT

20101005 071809.894741 INFO PET0 COMPLIANCECHECKER:|->:user model 1: importState itemCount: 2

20101005 071809.894785 ERROR PET0 COMPLIANCECHECKER:|->:user model 1: ==> The importState contains an ESMF_Array object!

20101005 071809.894819 INFO PET0 COMPLIANCECHECKER:|->:user model 1: importState item # 1 [ARRAY] name:Array002

20101005 071809.894850 INFO PET0 COMPLIANCECHECKER:|->:user model 1: importState item # 2 [FIELD] name:myTestField

4.5 Required Component and Field metadata is present
There are two levels of meta data conventions that NUOPC is currently considering for implementation. These metadata conventions are described and discussed in the “NUOPC Layer: Guidance Document on Model Metadata”.

The compliance checker probes the Components and Fields for the required metadata. The Component metadata is tested during the InitializeEpilogue, following a common Component use pattern that suggests that all standard Component metadata is set during the Component Initialize() call. The Field level metadata is checked on every Field that passes through the Component interface either via the import or export State. The Field metadata check extents to Fields contained in FieldBundles.

There are three possible messages the compliance checker can generate for each Attribute that it checks. Two are ERROR messages, indicating that the Attribute is either not present, or that it is present but not set. The other is an INFO message reporting that a specific Attribute is present and set. The following shows an example of all three cases:

20101005 071809.892873 ERROR PET0 COMPLIANCECHECKER:|->:user model 1: ==> Component level attribute: <ComponentShortName> is NOT present!
20101005 071809.895081 ERROR PET0 COMPLIANCECHECKER:|->:user model 1: ==> Field level attribute: <VariableShortName> is NOT set!

20101005 071809.895249 INFO PET0 COMPLIANCECHECKER:|->:user model 1: Field level attribute: <VariableLongName> is present and set.

4.6 Component Hierarchy and Control Flow
Every compliance checker log entry contains a control flow depth indicator. This indicator is a sequence of “|->” strings, resembling an arrow pointing to the right. The number of concatenated arrows indicates the depths in the Component hierarchy.
5 Implementation Notes
The ESMF compliance checker implementation is based on the interface component (IC) concept outlined in the following sections. The IC concept itself does not assume or require compliance checking to be integrated into the ESMF library. In fact, the IC concept was purposefully designed to allow a clean separation between code that provides ESMF core functionality and code that implements compliance checking.

Following NUOPC/CSC discussion the decision was made to integrate the ESMF compliance checker into the ESMF library releases. This was accomplished by implementing the required ESMF extensions to support general ICs, as outlined below, and coding the integrated compliance checker as a generic IC that comes with the ESMF source distribution. The advantage of this choice is that the compliance checker IC details are completely invisible to the user of the ESMF API who would like to explore the integrated compliance checker option. However, the current implementation does allow to further differentiate and specialize compliance checking if the need arises, and/or separate the compliance checker IC from the ESMF library distribution if a separate release schedule becomes desirable in the future.

5.1 Definitions and Terms

We define four aspects that are useful in the discussion of software interoperability issues for applications based on the ESMF Application Programming Interface (API).
Static Component Interface (SCI). The component API specified by ESMF is fixed on the programming language level. Any application interacting through ESMF components must abide to this API specification and as a result automatically becomes interoperable on the programming language level.
Dynamic Component Interface (DCI). The ESMF API defines precisely which ESMF data objects (State and Clock) can be passed through the SCI. However, the contents and attributes of these objects are not under the control of the SCI. These properties are runtime variables and constitute the dynamic interface of a component.
Component Use Pattern (CUP). Neither the SCI nor the DCI specify or control how components are used by upper level code in the component hierarchy of an application. There are many imaginable CUPs. Inspection of the existing ESMF-based NUOPC associated codes (NEMS, COAMPS, GEOS-5) has shown that each one is using a different CUP. Sometimes the same application uses differing CUPs on different levels in the component hierarchy. There is a strong interaction between DCI and CUP.
Component Distribution and Build Interface (CDBI). An often “forgotten” aspect of interoperability is the issue of how code components are distributed and expected to be build and assembled into applications. Fortunately for ESMF-based applications the SCI ensures that there are no problems on the language level between two independently developed pieces of code. Further, ESMF provides a standard Makefile template that can be used to write portable component build systems. Building on this template it seems feasible to develop a strong NUOPC CMA build pattern that removes the ambiguities associated with distributing and building components between the NUOPC participants.

5.2 Component Interfaces

The ESMF user API standardizes the static component interface (SCI) on the programming language level. The available language bindings are for FORTRAN and C. The ESMF SCI covers the ESMF_GridComp and ESMF_CplComp classes with their fixed set of standard methods, as well as the ESMF_State class which is the only conduit for passing data in and out of ESMF component objects.

The SCI rules encoded within the ESMF API are automatically enforced during the code compilation process by the compiler. The enforcement of the ESMF SCI rules is very strict: user code that does not follow the SCI will produce compilation errors and fail to build.

The ESMF SCI is a major step toward enhanced code interoperability for two reasons. First, the SCI only supports a few standard ESMF data types. This is critical because it prevents the passing of model specific types, and thus reduces the risk of circular code dependencies. All pieces of code that interact strictly through the ESMF SCI have no “hidden” inter-dependencies on the language level other than what is reflected in the component hierarchy of the application.

Second, code calling a component that follows the ESMF SCI can be written before the component code has been delivered. This is because of the standard component methods and of the standard data objects passed through the interface. Being able to develop the pieces of a large system independent of each other is a major advantage.

However, the ESMF SCI still allows for a lot of flexibility at runtime. This flexibility is beyond the programming language layer and thus cannot be defined or regulated within the SCI. These runtime aspects of the component interface constitute the dynamic component interface (DCI).

In general the DCI covers all aspects of what is being passed through the component interface. While the SCI regulates how, i.e. through which possible data objects, information is passed through the interface, the DCI regulates what actually is being passed. This covers the actual data objects used (Fields vs. FieldBundles vs. Arrays vs. ArrayBundles), Attribute on any of these objects as well as on the States and Component objects themselves, down into aspects of which Grid a Field is based on, which physical data is represented, or what the extents of the available data are. Any of these aspects are dynamic properties of the component interface, and as such part of the DCI.
Interesting the DCI also covers whether or not a component provides an actual implementation for the standard Initialize(), Run(), and Finalize() routines. Both FORTRAN and C, as a consequence of being procedural and not object oriented languages, lack the concept of abstract methods whose implementation is enforced by the compiler. Consequently the implementation of the standard ESMF component methods is not covered by the ESMF SCI but becomes part of the DCI that can only be enforced during runtime.
The desired level of interoperability for NUOPC requires that the NUOPC Layer must cover the DCI. This then raises the question of the format in which a set of DCI rules can be fixated in a precise enough manner to be useful. Further, what are the available mechanisms to enforce a set of NUOPC CMA DCI rules?

One possibility is through source code analysis: A piece of code containing a component that follows the ESMF SCI is run through an automated parser, or inspected manually by a human. The produced output is put into a format that uses standard DCI metrics (yet to be determined) and can be checked for compliance against a set of DCI rules, expressed in terms of the same DCI metrics.

While source code analysis of the component interface can be a useful tool in understanding the general structure of a piece of code, the approach suffers from the fact that it is static by nature. Analyzing the dynamic component properties requires that the relevant dynamical aspects of the code are fully comprehended, a formidable task. Further, the static analysis approach also easily suffers from “dead” code contained in source files, which may not be executed under regular conditions.

The alternative approach is dynamic analysis where the DCI is analyzed during execution. This requires that the code under consideration is linked into a working executable. This aspect is covered by the SCI, as discussed above, and also covered by the CDBI, and poses no problem in principle. The remaining questions then are where and how are the DCI rules formulated and where and how will they become enforceable? We propose an extension of the ESMF Component concept to address these questions.
5.3 ESMF Interface Components
One challenge of developing the right technical approach of how and where to formulate and enforce NUOPC CMA DCI rules is that many details of these standards are yet to be determined. At the same time, the absence of a concrete vehicle for the DCI rules adds yet another open question to the discussions aimed at formulating DCI and CUP rules. We believe that the proposed approach provides greatest possible flexibility and will help the effort.

The proposed ESMF Interface Component concept is an extension to the existing ESMF Component concept. To the user an Interface Component (IC) looks almost identical to a normal ESMF Component, both in the way that it is written and how it presents itself through the ESMF SCI. However, its use is that of holding and enforcing DCI rules. The DCI rules can now be encoded directly on the native language level where all ESMF objects are readily available. Once an IC has been written and made available it can be used by a NUOPC component developer to ensure that the developed component is indeed compliant with the DCI rules encoded within the IC.

The following FORTRAN pseudo code shows how the IC concept is applied in practice. There are only a few extensions to the existing ESMF API necessary to implement the IC concept. The extended calls are highlighted in “red”.

The example code is divided into three sections. The first section demonstrates how a component that uses an IC is used from the calling side. The fact that joesOCN uses an IC on the implementation side is completely transparent on this level. The second section provides the implementation of joesOCN and shows what is necessary to make it use the fictitious nuopcOCN Interface Component. The added burden of using an IC is minimal. All it requires is one extra register routine, that is responsible for calling one of the new IC specific ESMF calls. Finally the third section shows that an IC implementation looks almost identical to a regular ESMF Component. The places where DCI rule encoding and enforcement code goes are indicated by comments.
!---

! SECTION 1:

! Using a Component that instantiates an InterfaceComponent (IC):

! -> completely transparent, IC concept not at all visible to the caller

use ESMF_Mod

use joesOCN_Mod, only: register

joesOCN = ESMF_GridCompCreate(...)

call ESMF_GridCompSetServices(joesOCN, register, rc)

call ESMF_GridCompInitialize(joesOCN, ...)

call ESMF_GridCompRun(joesOCN, ...)

call ESMF_GridCompFinalize(joesOCN, ...)

call ESMF_GridCompDestroy(joesOCN, ...)

!---

! SECTION 2:

! Component instantiation from IC:

! -> standard ESMF Component approach with one minor _addition_

module joesOCN_Mod

 use ESMF_Mod
 use nuopcOCN_Mod, only registerIC ! this is where the IC is defined

 private ! everything is private by default
 public :: register ! only public symbol is "register" routine

 ! This is the only routine that looks different:
 subroutine register(comp, rc)
 type(ESMF_GridComp), intent(inout) :: comp
 integer, intent(out) :: rc
 ! The following call is a new overload to the ESMF_GridCompSetServices().
 ! Instead of directly calling SetEntryPoint() of the actual component IRF
 ! routines here the InterfaceComponent register is called. However,
 ! "registerSelf" is also passed as an argument because it is needed by ESMF to
 ! to also register the actual IRF routines.
 call ESMF_GridCompSetServices(comp, registerIC, registerSelf, rc)
 end subroutine
 ! All of the following routines are the standard routines used to setup
 ! an ESMF Component. Writing a Component that instantiates an IC is
 ! not any more difficult than writing a standard ESMF Component. In fact,
 ! it is trivial to add IC instantiation to an existing ESMF Component!
 subroutine registerSelf(comp, rc)
 type(ESMF_GridComp), intent(inout) :: comp
 integer, intent(out) :: rc
 call ESMF_GridCompSetEntryPoint(comp, ESMF_SETINIT, myInit, ...)
 call ESMF_GridCompSetEntryPoint(comp, ESMF_SETRUN, myRun, ...)
 call ESMF_GridCompSetEntryPoint(comp, ESMF_SETFINAL, myFinal, ...)
 end subroutine
 subroutine myInit(comp, is, ex, clk, rc)
 !... component specific standard initialize code
 end subroutine

 subroutine myRun(comp, is, ex, clk, rc)
 !... component specific standard run code
 end subroutine

 subroutine myFinal(comp, is, ex, clk, rc)
 !... component specific standard finalize code
 end subroutine

end module

!---

! SECTION 3:

! Interface Component containing code to enforce Component Interface Rules (CIR)

! -> looks just like standard ESMF Component, thus very intuitive and readable

module nuopcOCN_Mod

 use ESMF_Mod
 private ! everything is private by default
 public :: registerIC ! only public symbol is "registerIC" routine
 subroutine registerIC(comp, rc)
 type(ESMF_GridComp), intent(inout) :: comp
 integer, intent(out) :: rc
 !... joes registerSelf() will have been called when registerIC() is entered
 !... code that enforces NUOPC CIR for joes registerSelf() goes here
 call ESMF_GridCompSetEntryPoint(comp, ESMF_SETINIT, icInit, ...)
 call ESMF_GridCompSetEntryPoint(comp, ESMF_SETRUN, icRun, ...)
 call ESMF_GridCompSetEntryPoint(comp, ESMF_SETFINAL, icFinal, ...)
 end subroutine
 subroutine icInit(comp, is, ex, clk, rc)
 !... code that enforces NUOPC CIR on entry goes here
 call ESMF_GridCompInitializeSelf(comp, is, ex, clk, rc)
 !... code that enforces NUOPC CIR on exit goes here
 end subroutine

 subroutine icRun(comp, is, ex, clk, rc)
 !... code that enforces NUOPC CIR on entry goes here
 call ESMF_GridCompRunSelf(comp, is, ex, clk, rc)
 !... code that enforces NUOPC CIR on exit goes here
 end subroutine

 subroutine icFinal(comp, is, ex, clk, rc)
 !... code that enforces NUOPC CIR on entry goes here
 call ESMF_GridCompFinalizeSelf(comp, is, ex, clk, rc)
 !... code that enforces NUOPC CIR on exit goes here
 end subroutine
end module
A few key aspects of the Interface Component concept to encode and enforce DCI rules are:

· The DCI rules become part of the actual component itself.

· The DCI rules are enforceable every time a component is executed.

· A set of DCI rules can be encoded and distributed through a set of ICs. These rules may be component specific (e.g. ATM, OCN, ICE, LND, DYN, PHY, ...).

· IC code is written once and can be applied unchanged to many different component implementations to enforce the same set of DCI rules.

· The ESMF library acts as provider of the SCI standard and facilitator of DCI rule enforcement. However, ESMF retains its neutral role with respect to a specific set of DCI rules.

· Development of DCI rules and the associated set of ICs is independent of the ESMF development schedule.

· Implementation of DCI rules via ICs is not limited to the ESMF core team and the distribution is independent of the ESMF distribution.

· The performance impact of the IC layer can be mitigated for performance sensitive runs by providing an ESMF mechanism to skip the IC layer, and directly calling into the actual component implementation.

Open questions:

· Does it make sense to support IC hierarchies?

· There is a complicated interaction between DCI rules and the component use pattern (CUP) within an application. How will CUP be addressed within NUOPC, and how well will this fit with the IC concept?
��
	 Final Report from the National Unified Operational Prediction Capability (NUOPC) Interim Committee on Common Model Architecture (CMA), chair Scott Sandgathe, June 18, 2009.

13

