Extending Interoperability of ESMF-Based Models
Design and Implementation Plan

Contents
Integration Track	1
Interoperability Track	2
Essential MAPL features to be brought into NUOPC	3
Essential NUOPC features to be brought into MAPL	6


There are two activity tracks in this project. The first is an integration track, which has as an objective of replacing redundant code and improving capabilities in MAPL with ESMF and NUOPC Layer code. The second is an interoperability track, which further modularizes the ModelE code and implements several interoperability scenarios with components exchanged between ModelE and GEOS-5. 
[bookmark: _Toc469847214]Integration Track

A first step for the integration track is to update the grid remapping capability in MAPL/GEOS-5. The ESMF capability is fast and handles virtually any grid. The remapping in MAPL requires an off-line pixilation step first, and covers only a limited number of grid types. The update will increase the flexibility of remapping in GEOS-5.

This document describes the approach we will take to unify MAPL and NUOPC so that MAPL component can be used in NUOPC-based systems and NUOPC component can be used in MAPL-based systems.

The remapping in MAPL/GEOS-5 currently depends on two classes, location streams (LocStreams) and exchange grids. Location streams represent observational data. Exchange grids are an approach to conservative grid remapping developed at GFDL. The exchange grid is constructed by taking the union of the cell vertices in the “parent” grids to be remapped. Each exchange grid cell is associated with one cell on each parent grid, and fractional areas with respect to the parent grid cells. Data being transferred from one parent grid to the other is first interpolated onto the exchange grid using one set of fractional areas; and then onto the receiving grid using the other set of fractional areas. 

In MAPL, exchange grids and conservative grid remapping are implemented using LocStreams, and operations are executed through LocStream methods. The approach requires the off-line pixilation of some grids to get their cell areas. Another MAPL class, called Horizontal Transforms (HorzTransforms), includes non-conservative grid remapping methods. However, it is not a general capability, and supports only specialized transforms for particular pairwise grid remapping, such as between cubed sphere and lat-lon grids. ESMF implements exchange grids differently, as a separate class based on a 3D mesh. This 3D mesh is the core data structure in the parallel finite element framework that is the central engine for grid remapping in ESMF. All field discretizations - observational data streams, logically rectangular grids, and meshes - are converted into the common representation before remapping. This approach results in a high performance capability that can handle virtually all grid pairings, without requiring the off-line pixilation step. Merging these capabilities into a shared underlying layer is possible but challenging, since care must be taken to preserve the accuracy of specialized MAPL HorzTransforms and the performance and flexibility of ESMF grid remapping.

While the proposal described replacing native LocStreams with ESMF LocStreams as the next step, during the April project team meeting an alternate approach was discussed. Instead of replacing the LocStream, team members decided to begin with replacing higher level grid remapping methods. This would enable an initial implementation to happen with less effort. XGrids are used in GEOS-5 for remapping at the Atmosphere-Ocean, Atmosphere-Land, and Atmosphere-Ice interfaces.


Replacing higher level grid remapping methods in GEOS-5 required that ESMF have a natural representation of the cubed sphere grid. ESMF did not yet have a convenient interface for creating cubed sphere grids, or a 2D representation. It was necessary to define a mesh, and represent the grid as a 1-D structure instead of a set of connected logically rectangular grids 

Thus an initial sequence of implementation steps was determined to be:
· Update MAPL/GEOS-5 to the latest version of ESMF (ESMF 7).
· Acquire permissions for project team members at NASA JPL to access MAPL and GEOS-5 codes.
· Implement methods for the creation of cubed sphere grids in ESMF.
· Replace higher level grid remapping methods in GEOS-5 with ESMF grid remapping methods, using the new grid creation methods. This would be through a simple switch, not use of LocStreams.
· Test the performance of the ESMF capabilities against the GEOS-5 original, and identify any additional tasks or deficiencies.

The completion timeline is the first year of the project.

A next sequence of steps will begin with the following:
· Explore replacing GEOS-5 and MAPL data structures more extensively with ESMF LocStreams and XGrid.

These steps are consistent with the schedule in the initial proposal.
[bookmark: _Toc469847215]Interoperability Track

Interoperability of the MAPL and NUOPC layers is a priority at NASA.  This document describes the approach we will take to unify MAPL and NUOPC so that MAPL component can be used in NUOPC-based systems and NUOPC component can be used in MAPL-based systems.

While the overarching goal is compatibility of these two software layers, several design objectives have been identified to guide the work:

· Minimize redundant code
· Minimize the maintenance/support burden associated with the two software layers
· Keep the overall solution as simple as possible for the broader community
· End up with a coherent design and clear rules of component behavior
· Minimize disruption to existing applications, especially avoiding restructuring of existing ones

A prior analysis has already established sufficient similarity and scope of MAPL and NUOPC to warrant this interoperability task.  Those will not be reviewed in detail here, although more information can be found in the MAPL/NUOPC analysis document and in two recent NASA proposals: The Cupid Integrated Development Environment (NASA CMAC) and Extending Interoperability of ESMF-based Model (NASA MAP).

Several basic approaches were considered for MAPL/NUOPC interoperability:

· NUOPC implements all essential MAPL features and a thin MAPL wrapper may be retained if needed/desired
· MAPL implements all essential NUOPC features
· NUOPC and MAPL coexist and the ESMF team supports both

We have selected the first approach as it is consistent with the design objectives while ensuring that existing NUOPC components in use across several agencies (NOAA, Navy, NASA) will not require restructuring.  Under the first approach, all essential MAPL capabilities (detailed below) will be brought into NUOPC in a systematic way.  Once a feature has been adopted into NUOPC, it may be used directly via the NUOPC API. 

There are at least two paths for evolution of existing MAPL-based systems.  First, if the newly introduced NUOPC APIs are similar enough to existing MAPL APIs, it should be possible for these systems to replace MAPL calls with direct calls into NUOPC.  Where possible, we will keep these APIs as consistent as possible. A second approach is for MAPL APIs to be adapted to act as a thin layer on top of NUOPC so that existing applications require minimal code changes.  

In general, we will take a pragmatic approach to the unification process, understanding that it may be difficult to fully reconcile all differences in component rules and behaviors between MAPL and NUOPC.  For this reason, we will strive to maintain a coherent overall design of the resulting API.  While we believe that most, if not all, essential MAPL features can be brought into NUOPC, some specialized behaviors may need to be maintained in a separate MAPL layer. We will seek to minimize these as much as possible.

[bookmark: _Toc469847216]MAPL features to be brought into NUOPC

From MAPL 1. Deeply nested component hierarchies

Most existing NUOPC applications feature coarse-grained components at the major domains ATM, OCN, LND, ICE, WAV.   MAPL supports deeply nested hierarchies of fine-grained components.  Nesting of NUOPC components has been prototyped already by wrapping a NUOPC Model inside a Driver.  This approach needs to be tested against deep hierarchies and adapted as needed.  A design consideration here is whether there is extra overhead, both in terms of performance and code bloat, for requiring both a NUOPC Driver and a NUOPC Model at each level of the hierarchy.

A related design consideration is that NUOPC Drivers have a parameterized run sequence.  This is essentially a sequence of calls into child run methods.  They may be interleaved and looped somewhat arbitrarily.  The tradeoff here is that the generic NUOPC Driver can be reused in many contexts and the run sequence read in dynamically.  On the other hand, a MAPL component’s run method has full flexibility to call into child components as needed and customized mediation code may also be provided.  A more detailed analysis should be done during implementation to determine the limits of the parameterized run sequence and whether a mechanism for “dropping to code” should be introduced.  This could be implemented by overriding a Driver’s existing run method, ignoring the run sequence structures, and making explicit calls as needed into child components.  Care would need to be taken to ensure that no other NUOPC rules are broken, e.g., that on exit of the run method all child clocks and the driver clock are in agreement and at the expected time.  When possible, the parameterized run sequence should be highly preferred as it keeps NUOPC in control, ensuring all technical rules are satisfied.

From MAPL 2. Propagation of component Grids from parent to child

MAPL assumes a single Grid (or LocStream) for each component and all Fields are on that Grid.  The Grid is typically passed down from the parent and must be set before calling the MAPL generic initialize.  

Although not technically restricted, most NUOPC components also have a single Grid (or Mesh or LocStream), and we have made the single Grid per component assumption in some applications, e.g., NEMS, which applies the same regrid operation to all Fields of a component.  In NUOPC there is not currently a built-in behavior for passing a Grid down from parent to child, although a Grid object can be associated with a component using ESMF_GridCompSet().  This could be done prior to initializing the child component.  The NUOPC initialization sequence could be extended to retrieve a grid set by the parent if available.  This would need to be done in an early phase before Fields are created.

A related mechanism in NUOPC is the ability to transfer Grids between components.  This process is negotiated during the initialization sequence.  It might be possible to reuse this mechanism in the parent/child relationship, although it seems to fill a different role, i.e., to exchange grids between sibling components or to propagate a grid from a Model to a Mediator.  The use of the existing Grid transfer mechanism should be further explored during implementation time.

There are convenience functions for creating Grids in MAPL.  Additional convenience Grid creation methods have recently been added to ESMF and may be sufficient.  However, there is no reason why the existing MAPL functions could not be retained as they still return a standard ESMF_Grid object.

From MAPL 3. State and Field management

Both MAPL and NUOPC manage a component’s State and Fields, although in different ways.  MAPL allocates a separate Internal state (in addition to Import and Export) and has the ability to checkpoint and restart the Import and Internal States.  NUOPC does not prevent the use of Internal States, but leaves it entirely up the user to allocate these if desired.  It should not be difficult to add an option to allocate an Internal state automatically if desired. 

MAPL components add Field specifications during in the SetServices method via calls to MAPL_AddImportSpec() , APL_AddExportSpec(), and MAPL_AddInternalSpec().  A large number of attributes can be supplied that control how MAPL handles each Field.  The specified Fields are created during the generic initialize method and all Fields are on the component’s Grid.

NUOPC similarly requires Field specifications, although the process is spread across several initialization phases (i.e., Advertise and multiple Realize phases) so that a component’s final list of Fields can be negotiated dynamically based on the data dependencies of the system as a whole.  In this regard, the NUOPC mechanism is more flexible and should be able to cover the explicit Field declarations of MAPL components.  NUOPC could be extended to give the appearance of a single initialize phase (like MAPL), with all needed metadata supplied at one time -- essentially filling in the Field Advertise, Grid Transfer, and Field Realize initialization methods automatically.  This could be done by extending NUOPC_Model to a new kind of component that assumes a fixed set of Fields (i.e., all fields Advertised will be Realized, etc.)

NUOPC currently uses a limited set of Field-level attributes (e.g., Standard name, units, long name, short name) compared to that of MAPL.  Additional attributes can be added as needed to match those currently provided by MAPL. 

From MAPL 4. Parent/child Field propagation and explicit Field connectivities

In MAPL, field connections are made explicit at the parent level via calls to MAPL_AddConnectivity() which specifies the source and destination child components and the list of Fields short names to connect. The NUOPC Field connection mechanism is based primarily on matching Standard names and these names can also have a namespace to resolve ambiguities if necessary.   Since the existing Field connection mechanism is more flexible, it should be preferred and might be sufficient as currently implemented.  Standard names would need to be introduced to MAPL applications to use the existing mechanism.

Another approach is to introduce a NUOPC method similar to MAPL_AddConnectivity that explicitly defines a set of connected fields between two components.  This would circumvent (or at least hide) the existing field connection negotiation process.

In MAPL, unsatisfied import fields are propagated upwards from child to parent until a matching field is found.  This upsweep will require careful consideration in NUOPC, but there are no foreseen conceptual barriers.  One result is that within NUOPC, the field connection process (whether explicit or using the existing standard name matching algorithm) will need to proceed from the deepest level of the hierarchy upwards.  Currently, NUOPC compatibility checking will fail with an error if any component’s import field is not connected.  Additional logic will need to be added to first allow a field to propagate upwards to see if it can be connected at a higher level.  Then, an error will only be reported if no higher level component could satisfy the dependency.

In MAPL, a parent component aggregates all of the export fields of its children into its own export state.  NUOPC will be extended to also support this propagation.

From MAPL 5. Configuration propagates from parent to child

MAPL makes extensive use of the ESMF_Config data structure to transfer root level configuration parameters through the entire component tree.  NUOPC does not support this automatically, although it is not prevented.  An option can be added to NUOPC to hand down configuration objects from parent to child if present.

At the same time, some configuration metadata can be passed down naturally through the existing NUOPC behavioral rules, such as the start/stop time and coupling intervals.  In these cases, the amount of configuration metadata that must propagate downward can be reduced.

From MAPL 6. Checkpoint and restart

MAPL provides automated mechanisms for checkpointing (writing out) and restarting (reading in) Import and Internal states.  ESMF currently supports parallel I/O of Fields objects, although NUOPC does not currently automate reading/writing of Fields--instead it is left up to the user.  

NUOPC may be extended to add an option for standard checkpointing and restarting.  This could be based on the presence of certain attributes at the Field or State level.  It might be possible to leverage existing application-level restart capabilities, such as that being built into NEMS.  Moving this into NUOPC would allow other systems to take advantage of a general restart capability.  Additional analysis will be done at implementation time to determine the details of the MAPL checkpoint/restart capability, and whether it should be parameterized inside NUOPC.

From MAPL 7. Profiling

MAPL supports basic profiling with timers.  NUOPC also supports some existing profiling capabilities, primarily focused on memory usage.  ESMF log output also contains timestamps that can be used to determine timings of various execution phases.  We will explore whether there is a benefit to including these capabilities in the NUOPC layer.

Existing MAPL capabilities NOT to be supported in NUOPC

Not from MAPL 1. Output management by MAPL_History

The MAPL_History component is responsible for writing out Fields of all export States in a component hierarchy using certain conventions as well as limited horizontal and vertical interpolation capabilities.  Output is based on a set of parameters in a configuration file.

Because the output conventions of a coupled modeling system are highly dependent on the procedures and preferences of individual modeling centers, it would not be advisable to bring this capability directly into the NUOPC layer.  However, if required, convenience methods may be added to NUOPC and/or ESMF to ensure that Field reading/writing capabilities are present at the framework level.

Not from MAPL 2. Asynchronous I/O via MAPL_CFIOServer

The MAPL_CFIOServer provides asynchronous I/O capabilities so that these operations can be overlapped with model computation.  An asynchronous I/O capability has already been prototyped within NUOPC under separate funding.  We will explore the degree to which this existing prototype can be extended to support MAPL_CFIOServer features.  It may be possible to merge these two into a single NUOPC-based I/O component.

Not from MAPL 3. Fulfilling Import Fields via MAPL_ExtData

The MAPL_ExtData component is a top-level component capable of reading in data from file and providing it to satisfy import fields that have propagated all the way to the top of the hierarchy.  As mention in the MAPL_History section, specific data file conventions are likely to vary among institutions making it difficult to define a generalized NUOPC component to handle external data.  We therefore expect that this capability will remain largely within the MAPL layer.

Some more general functions may be brought into NUOPC if beneficial to a broad audience.  One possibility is the Field expression language (MAPL_NewArthParserMod), which allows for defining derived ESMF Fields using arithmetic expressions, e.g., FieldD = (FieldA + FieldB) / FieldC.  This capability would simplify existing code in NUOPC Mediators and reduce error prone array-based arithmetic required for field merges.

Not from MAPL 4. Basic I/O with MAPL_CFIO

The MAPL_CFIO module provides interfaces between ESMF data types and either self-describing (e.g., NetCDF/HDF5) or flat files.  Where possible, I/O calls will be replaced with parallel I/O provided by the ESMF API.  Any customized file I/O functions will remain in the MAPL layer.

[bookmark: _GoBack]An initial step was determined to be:
· Implement hierarchies in the NUOPC Layer, following the items under From MAPL 1-4, and prepare this as a NUOPC nested prototype.
The completion timeline is the first year of the project. This is consistent with the schedule in the proposal.
Test Plan

The NUOPC nested prototype will be used to implement a MAPL example, and results will be tested to check that they are bit-for-bit with the original.

Future Work

This design and implementation plan will be updated as work proceeds.
