The Common Model Architecture of the National Unified Operational Prediction Capability

Coupling Workshop 2013, Feb. 20-22, NCAR, Boulder, CO

Gerhard Theurich (ESMF Core Team/NESII/SAIC)
• **National Unified Operational Prediction Capability**
 - Consortium of U.S. operational weather and water prediction centers.

• Participants: NOAA, Navy, Air Force, NASA, and other associated modeling groups.

• Develop a Common Model Architecture (CMA) to:
 - Improve collaboration among agencies.
 - Accelerate the transition of new technology into the operational centers.

• NUOPC websites:
 → http://www.weather.gov/nuopc
 → http://earthsystemcog.org/projects/nuopc/
Basic Building Blocks:

- **Model**
 - Typically implements a specific physical domain, e.g. atmosphere, ocean, land, seaice, wave, ...

- **Connector**
 - Unidirectional connection from one component to another, e.g. Model-to-Model, Model-to-Mediator, etc.
 - Executes *simple* transforms (Regrid or Redist).

- **Mediator**
 - Custom coupling between *multiple* models (e.g. flux calculations, averaging, etc.).
 - Uses ESMF tools like Regrid and XGrid.

- **Driver**
 - Harness for Models, Mediators, and Connectors.
 - Coordinates initialization and run sequencing.
Simple ATM-OCN

Earth System Driver

ATM

OCN

Connector

Connector

PET
Simple ATM-OCN

Earth System Driver

<table>
<thead>
<tr>
<th></th>
<th>Consumer Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Connector</td>
</tr>
<tr>
<td>OCN</td>
<td>Connector</td>
</tr>
</tbody>
</table>

Producer Side
<table>
<thead>
<tr>
<th>Producer Side</th>
<th>Consumer Side</th>
<th>Med</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>ATM</td>
<td>Conn</td>
</tr>
<tr>
<td>OCN</td>
<td>OCN</td>
<td>Conn</td>
</tr>
<tr>
<td>LND</td>
<td>LND</td>
<td>Conn</td>
</tr>
<tr>
<td>ICE</td>
<td>ICE</td>
<td>Conn</td>
</tr>
<tr>
<td>WAV</td>
<td>WAV</td>
<td>Conn</td>
</tr>
<tr>
<td>Med</td>
<td>Med</td>
<td>Conn</td>
</tr>
</tbody>
</table>
Earth System Driver

<table>
<thead>
<tr>
<th>Producer Side</th>
<th>Consumer Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Consumer Side</td>
</tr>
<tr>
<td>ATM</td>
<td>ATM</td>
</tr>
<tr>
<td>ATM</td>
<td>Med</td>
</tr>
<tr>
<td>Med</td>
<td>Med</td>
</tr>
<tr>
<td>OCN</td>
<td>OCN</td>
</tr>
<tr>
<td>ICE</td>
<td>ICE</td>
</tr>
<tr>
<td>Med</td>
<td>Med</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATM</th>
<th>ATM</th>
<th>Med</th>
<th>OCN</th>
<th>ICE</th>
<th>Med</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conn</td>
<td>Conn</td>
<td>Conn</td>
<td>Conn</td>
<td>Conn</td>
<td>Conn</td>
</tr>
</tbody>
</table>
Additional CMA Features

- Explicit, Semi-Implicit, and Implicit Coupling
- Nested Domains
- Single- and Multi-Model Ensembles
- Component Hierarchies
Technical Aspects

- Component interfaces
 - Initialize/Run/Finalize (with phases)
 - Import State and Export State

- Initialization sequence
 - Resolve dependencies between Components
 - Resolve initialize data dependencies

- Run sequence
 - Support explicit, semi-implicit, implicit coupling
 - Support nested domains

- Timekeeping
 - Driver controls child components
 - Require a common and complete representation for timekeeping objects

- Grid and data representation
 - Structured and unstructured

- Metadata
 - On components and fields
 - Self-documentation
 - Human readable interaction CMA interactions (e.g. Connected, Updated, Timestamps, CplList)
NUOPC Layer

- Software layer that implements portions of the NUOPC CMA on top of ESMF:
 - Generic components (Driver, Model, Mediator, Connector)
 - Utility methods
 - Field dictionary (standard names for matching)
- Compliance checker
- A prototype has been in ESMF since v5.2.0r.
- The current version is available in ESMF v6.1.1.
- First “production” release is scheduled for later this year (2013).
Templating by Generic Library Code

Application

```fortran
...  
call lib_method()  
...  
end
```

Library

```fortran
subroutine lib_method()  
...  
...  
  call app_special()  
...  
end subroutine
```

subroutine app_special()
...
end subroutine
Generic Components
- Component Templates

Application

```plaintext
... call Comp.Initialize()
... end
```

```
subroutine Comp.Initialize()
...! do what goes beyond
...! generic NUOPC code
end subroutine
```

NUOPC

```
subroutine NUOPC_GenericComp_Init()
...! generic code, e.g. checking
call app_specific_Comp_Init()
...! generic code, e.g. time stamp
end subroutine
```

ESMF

```
subroutine Comp.Initialize()
... call NUOPC_GenericComp_Init()
... end subroutine
```
CMA elements provided by Generic Component Code

NUOPC_Driver

- **Generic Initialize:**
 - Creates child Components and their States
 - Attaches Component metadata
 - Sets up the default RunSequence
 - Drives the initialization sequence for its children

- **Generic Run:**
 - Validates incoming Clock against internal Clock
 - Takes parent timestep forward by driving children according to the RunSequence

- **Generic Finalize:**
 - Drives finalize for all children
 - Destroys all child Components and their States
CMA elements provided by Generic Component Code

NUOPC_Model

- **Generic Initialize:**
 - Sets the internal Clock
 - Checks that all the import Fields are connected
 - Timestamps the import and export Fields

- **Generic Run:**
 - Validates incoming Clock against internal Clock
 - Checks that all import Fields are at the current time
 - Advances model forward according to parent time step
 - Timestamps the export Fields

- **Generic Finalize:**
 - NOOP
CMA elements provided by Generic Component Code

NUOPC_Mediator

- **Generic Initialize:**
 - Sets the internal Clock
 - Checks that all the import Fields are connected
 - Timestamps the import and export Fields

- **Generic Run:**
 - Validates incoming Clock against internal Clock
 - Checks that all import Fields are at the current time
 - Timestamps the export Fields at the current time

- **Generic Finalize:**
 - NOOP
CMA elements provided by Generic Component Code

NUOPC_Connector

- **Generic Initialize:**
 - Constructs a list of matching Fields between its import State and export State
 - Pre-computes a RouteHandle for the paired Fields

- **Generic Run:**
 - Executes the RouteHandle
 - Updates the timestamps on the export Fields to match the timestamp on the import Fields

- **Generic Finalize:**
 - Releases the RouteHandle
Subjective look at different Template Techniques

- “Best practices” as a list of conventions and rules.
 - Cumbersome, error prone, difficult to enforce, requires code modifications as conventions change.

- Coding examples to be used as copy-and-paste templates.
 - Easy to introduce errors, actual code diverges from template, difficult to maintain compliance when templates change.

- Automatic code generation.
 - Actual code diverges from originally generated version, incorporating existing changes into re-generated code (e.g. new version) is difficult. Challenging for the user to debug the end result code.

- Generic library code with hooks for specialization.
 - Well established OOP concept (abstract classes). All of the logic visible in the call trace. Prepend actual Component name to all log messages. Compliance checker “visualizes” the Component interactions.
Adoption & Activities

- The Navy NOGAPS/NAVGEM and HYCOM coupled system
- The Navy COAMPS coupled system
- The NOAA Environment Modeling System (NEMS) from NOAA NCEP EMC
- The NOAA Climate Forecast System (CFS) from NOAA NCEP EMC
- The WaveWatch 3 model from NOAA NCEP EMC
- The MOM5 ocean model from NOAA GFDL and CICE sea ice model from DOE/Los Alamos
- The GEOS-5 atmospheric general circulation model from NASA Goddard Space Flight Center
- The Ionosphere Plasmasphere Electrodynamics model from the NOAA Space Weather Prediction Center
- The NASA Goddard Institute for Space Studies Model E
- The Community Earth System Model from NCAR/DOE (currently infrastructure)
Thank You!

http://earthsystemcog.org/projects/nuopc/

esmf_support@list.woc.noaa.gov